在low-level-api中,我们可以使用
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
def yichu_dssm_model_fn(
features, # This is batch_features from input_fn
labels, # This is batch_labels from input_fn
mode, # An instance of tf.estimator.ModeKeys
params):
# word_id sequence in content
content_input = tf.feature_column.input_layer(features, params['feature_columns'])
content_embedding_matrix = tf.get_variable(name='content_embedding_matrix',
shape=[FLAGS.max_vocab_size, FLAGS.word_vec_dim])
content_embedding = tf.nn.embedding_lookup(content_embedding_matrix, content_input)
content_embedding = tf.reshape(content_embedding, shape=[-1, FLAGS.max_text_len, FLAGS.word_vec_dim, 1])
content_conv = tf.layers.Conv2D(filters=100, kernel_size=[3, FLAGS.word_vec_dim])
content_conv_tensor = content_conv(content_embedding)
"""
in low-level-api, we can use `print(session.run(content_conv_tensor))` to get the real data to debug.
But in custom estimator, how to debug these tensors?
"""
获取用于调试的真实数据。但在自定义估算器中,如何调试这些张量?
以下是生动样本的摘要:
{{1}}
答案 0 :(得分:1)
您可以使用tf.Print。它为图形添加了操作,可在执行时将张量内容打印到标准错误。
content_conv_tensor = tf.Print(content_conv_tensor, [content_conv_tensor], 'content_conv_tensor: ')
答案 1 :(得分:0)
sess = tf.InteractiveSession()
test = sess.run(features)
print('features:')
print(test)
尽管这会导致错误,但仍会打印出张量值。打印后立即发生错误,因此您只能将其用于检查张量值。
答案 2 :(得分:0)
tf.Print已过时,请使用tf.print,但使用起来并不容易
最好的选择是日志挂钩
hook = \
tf.train.LoggingTensorHook({"var is:": var_to_print},
every_n_iter=10)
return tf.estimator.EstimatorSpec(mode, loss=loss,
train_op=train_op,
training_hooks=[hook])