如何计算数据框中的总元素,包括子集,并将结果放入新列?
import pandas as pd
x = pd.Series([[1, (2,5,6)], [2, (3,4)], [3, 4], [(5,6), (7,8,9)]], \
index=range(1, len(x)+1))
df = pd.DataFrame({'A': x})
我尝试使用以下代码,但每行中都有2个:
df['Length'] = df['A'].apply(len)
print(df)
A Length
1 [1, (2, 5, 6)] 2
2 [2, (3, 4)] 2
3 [3, 4] 2
4 [(5, 6), (7, 8, 9)] 2
但是,我想得到的是:
A Length
1 [1, (2, 5, 6)] 4
2 [2, (3, 4)] 3
3 [3, 4] 2
4 [(5, 6), (7, 8, 9)] 5
感谢
答案 0 :(得分:1)
假设:
import pandas as pd
x = pd.Series([[1, (2,5,6)], [2, (3,4)], [3, 4], [(5,6), (7,8,9)]])
df = pd.DataFrame({'A': x})
您可以编写一个递归生成器,为每个不可迭代的嵌套元素生成1
。这些方面的东西:
import collections
def glen(LoS):
def iselement(e):
return not(isinstance(e, collections.Iterable) and not isinstance(e, str))
for el in LoS:
if iselement(el):
yield 1
else:
for sub in glen(el): yield sub
df['Length'] = df['A'].apply(lambda e: sum(glen(e)))
产量:
>>> df
A Length
0 [1, (2, 5, 6)] 4
1 [2, (3, 4)] 3
2 [3, 4] 2
3 [(5, 6), (7, 8, 9)] 5
这将适用于Python 2或3.使用Python 3.3或更高版本,您可以使用yield from
替换循环:
def glen(LoS):
def iselement(e):
return not(isinstance(e, collections.Iterable) and not isinstance(e, str))
for el in LoS:
if iselement(el):
yield 1
else:
yield from glen(el)
答案 1 :(得分:0)
使用itertools
df['Length'] = df['A'].apply(lambda x: len(list(itertools.chain(*x))))
答案 2 :(得分:0)
您可以尝试使用此功能,它是递归的,但它可以工作:
def recursive_len(item):
try:
iter(item)
return sum(recursive_len(subitem) for subitem in item)
except TypeError:
return 1
然后以这种方式调用apply函数:
df['Length'] = df['A'].apply(recursive_len)