我正在for循环中训练8个模型,并将每个tensorboard日志文件保存到一个单独的目录中。文件夹结构就像Graph
是我Graph
下的图形和目录的主目录,例如net01
net02
... net08
是我正在输出的我的活动档案。通过这样做,我可以用这种花哨的方式在Tensorboard中可视化训练日志,每一个训练过程都有自己的颜色。
我的问题是eventfiles
的规模越来越大。第一个事件文件大约是300KB,但第二个事件文件的大小为600KB,第三个是900KB,依此类推。它们各自位于它们自己的单独目录中,并且每个目录都是彼此不同的训练会话,但不知何故,张量板将较早的会话附加到最后一个会话中。最后,我的总大小应该是12 * 300Kb = 3600 KB的会话文件,但我最终得到了10800KB的会话文件。随着网络越来越深,我的会话文件大小就像600 MB一样。很明显我错过了一些东西。
我尝试将最大尺寸的最后一个文件可视化,以检查它是否包含所有以前的训练课程,并且可以画出8个网但是失败了。因此,一大堆无关信息存储在此会话文件中。
我在Win7-64上使用Anaconda3-Spyder。数据库分为8个,每次运行我只剩下一个用于验证,其余用作训练。这是我的代码的简化版本:
from keras.models import Model
from keras.layers import Dense, Flatten, Input, Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import TensorBoard, ModelCheckpoint, CSVLogger
import os.path
import shutil
import numpy
# ------------------------------------------------------------------
img_width, img_height = 48, 48
num_folds=8
folds_path= "8fold_folds"
nets_path = "8fold_nets_simplenet"
csv_logpath = 'simplenet_log.csv'
nets_string = "simplenet_nets0"
nb_epoch = 50
batch_size = 512
cvscores = []
#%%
def foldpath(foldnumber):
pathbase= os.path.join(folds_path,'F')
train_data_dir = os.path.join(pathbase+str(foldnumber),"train")
valid_data_dir = os.path.join(pathbase+str(foldnumber),"test")
return train_data_dir,valid_data_dir
#%%
for i in range(1, num_folds+1):
modelpath= os.path.join(nets_path,nets_string+str(i))
if os.path.exists(modelpath):
shutil.rmtree(modelpath)
os.makedirs(modelpath)
[train_data_dir, valid_data_dir]=foldpath(i)
img_input = Input(shape=(img_width,img_height,1),name='input')
x = Conv2D(32, (3,3), activation='relu', padding='same', name='conv1-'+str(i))(img_input)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1-'+str(i))(x)
x = Conv2D(64, (3,3), activation='relu', padding='same', name='conv2-'+str(i))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2-'+str(i))(x)
x = Conv2D(128, (3,3), activation='relu', padding='same', name='conv3-'+str(i))(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool3-'+str(i))(x)
x = Flatten()(x)
x = Dense(512, name='dense1-'+str(i))(x)
#x = Dropout(0.5)(x)
x = Dense(512, name='dense2-'+str(i))(x)
#x = Dropout(0.5)(x)
predictions = Dense(6, activation='softmax', name='predictions-'+str(i))(x)
model = Model(inputs=img_input, outputs=predictions)
# compile model-----------------------------------------------------------
model.compile(optimizer='Adam', loss='binary_crossentropy',
metrics=['accuracy'])
# ----------------------------------------------------------------
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(rescale=1./255,
featurewise_std_normalization=True,
featurewise_center=True)
valid_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
color_mode='grayscale',
classes = ['1','3','4','5','6','7'],
class_mode='categorical',
shuffle='False'
)
validation_generator = valid_datagen.flow_from_directory(
valid_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
color_mode='grayscale',
classes = ['1','3','4','5','6','7'],
class_mode='categorical',
shuffle='False'
)
# --------------------callbacks---------------------------
csv_logger = CSVLogger(csv_logpath, append=True, separator=';')
graph_path = os.path.join('Graphs',modelpath)
os.makedirs(graph_path)
tensorboard = TensorBoard(log_dir= graph_path, write_graph=True, write_images=False)
callbacks_list=[csv_logger,tensorboard]
# ------------------
print("Starting to fit the model")
model.fit_generator(train_generator,
steps_per_epoch = train_generator.samples/batch_size,
validation_data = validation_generator,
validation_steps = validation_generator.samples/batch_size,
epochs = nb_epoch, verbose=1, callbacks=callbacks_list)
答案 0 :(得分:1)
不确定这个,但我的猜测是它与你在每次循环迭代后存储的图表有关。要检查您的图表是否对此负责,您可以尝试write_graph = False
,看看是否仍有相同的问题。为了确保重置图形,您可以尝试使用以下方法清除每次迭代结束时的张量流图:
keras.backend.clear_session()
答案 1 :(得分:0)
问题在于,通过对每个模型的训练,下一个模型仍然包含先前训练的所有图形元素。因此,在训练每个模型之前,重置Tensorflow图,然后继续训练。