我试图比较python list和numpy数组的处理时间。 我知道numpy数组比python列表快,但是当我实际检查时,我得到的列表比numpy数组更快。
这是我的代码:
import numpy
from datetime import datetime
def pythonsum(n):
'''
This function calculates the sum of two python list
'''
a = list(range(n))
b = list(range(n))
c = []
total = 0
for i in range(len(a)):
a[i] = i ** 2
b[i] = i ** 3
c.append(a[i] + b[i])
return c
def numpysum(n):
'''
This function calculates the sum of two numpy array
'''
a = numpy.arange(n) ** 2
b = numpy.arange(n) ** 3
c = a + b
return c
if __name__ == "__main__":
n = int(input("enter the range"))
start = datetime.now()
result = pythonsum(n)
delta = datetime.now()-start
print("time required by pythonsum is",delta.microseconds)
start = datetime.now()
result1 = numpysum(n)
delta = datetime.now()-start
print("time required by numpysum is",delta.microseconds)
delta = datetime.now()-start
print("time required by numpysum is",delta.microseconds)
输出:
In [32]: run numpy_practice.py
enter the range7
time required by pythonsum is 0
time required by numpysum is 1001
答案 0 :(得分:0)
将锅炉板下方的代码更改为此,然后使用timeit
模块。这段代码允许我多次执行函数并返回平均值和标准差执行时间。
if __name__ == "__main__":
import timeit
n = int(input("enter the range"))
setup = """\
import numpy as np
from __main__ import numpysum,pythonsum
n = {iterations}
""".format(iterations=n)
npex = numpy.array(timeit.repeat('numpysum(n)',setup=setup,repeat=100,number=1000))
pyex = numpy.array(timeit.repeat('pythonsum(n)',setup=setup,repeat=100,number=1000))
print("Numpy Execution Time, mean={m},std={sd}".format(m=npex.mean(),sd=npex.std(0)))
print("Python Execution Time, mean={m},std={sd}".format(m=pyex.mean(), sd=pyex.std(0)))
通过n = 100测试,很明显numpy快得多
enter the range100
Numpy Execution Time, mean=0.00482892623162404,std=0.0005752600215192671
Python Execution Time, mean=0.1037349765653833,std=0.004933817536363718