我试图通过试验newsgroup20数据集来学习。我的训练模型很好,预测部分是我遇到问题的地方。现在我要做的是将训练模型(使用pickle)保存在一个函数中,并在另一个函数中对pickle数据执行预测。我找到的所有教程都给我如何保存和加载pickle文件,但不提供如何提取X_train和y_train。如果有人能提供帮助,那将是非常好的。这是我的代码
def classifier():
twenty_train = fetch_20newsgroups(subset='train', shuffle=True, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(twenty_train.data, twenty_train.target, test_size=0.4, random_state=0)
naive_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
])
naive_clf.fit(X_train, y_train)
filename = 'finalized_model.sav'
pickle.dump(naive_clf, open(filename, 'wb'))
def predictions(): # need help in first 3 lines and last print statement
loaded_model = pickle.load(open('finalized_model.sav', 'rb'))
result = loaded_model.score(X_test, y_test)
print(result)
#parsing my file as string for prediction(works fine)
with open("/home/ubuntu/Desktop/text_classifier/dataset/predict/file,txt", "r") as myfile:
file=myfile.readlines()
file = ''.join(file)
print('belongs to class {} according to naive bayes'.format(twenty_train.target_names[loaded_model.predict([file])[0]]))`
答案 0 :(得分:3)
使用pickle保存模型时,只保存模型本身,而不保存用于训练的数据。因此,如果要使用pickle加载数据,则需要单独保存。例如:
data = {'train': X_train, 'target': y_train}
with open('data.pkl', 'wb') as f:
pickle.dump(data, f)
with open('data.pkl', 'rb') as f:
data = pickle.load(f)
X_train = data['train']
y_train = data['target']