我在cython代码中看到了一些奇怪的行为。我正在编写代码来计算前向卡尔曼滤波器,但我有一个状态转换模型,其中有许多0
s,所以能够只计算协方差矩阵的某些元素会很好。
因此,为了测试这一点,我想使用cython填充单个数组元素。令我惊讶的是,我找到了
将输出写入特定数组位置的速度非常慢(function fill(...))
,而每次(function nofill(...))
只是将其分配给标量变量(基本上忘记了结果),并且
设置C=0.1
或31
,同时不会影响nofill(...)
运行的时间,后者选择C使fill(...)
运行速度慢2倍。这让我感到困惑。任何人都可以解释为什么我会看到这个吗?
代码: -
################# file way_too_slow.pyx
from libc.math cimport sin
# Setting C=0.1 or 31 doesn't change affect performance of calling nofill(...), but it makes the fill(...) slower. I have no clue why.
cdef double C = 0.1
# This function just throws away its output.
def nofill(double[::1] x, double[::1] y, long N):
cdef int i
cdef double *p_x = &x[0]
cdef double *p_y = &y[0]
cdef double d
with nogil:
for 0 <= i < N:
d = ((p_x[i] + p_y[i])*3 + p_x[i] - p_y[i]) + sin(p_x[i]*C) # C appears here
# Same function keeps its output.
# However: #1 - MUCH slower than
def fill(double[::1] x, double[::1] y, double[::1] out, long N):
cdef int i
cdef double *p_x = &x[0]
cdef double *p_y = &y[0]
cdef double *p_o = &out[0]
cdef double d
with nogil:
for 0 <= i < N:
p_o[i] = ((p_x[i] + p_y[i])*3 + p_x[i] - p_y[i]) + sin(p_x[i]*C) # C appears here
以上代码由python程序调用
#################### run_way_too_slow.py
import way_too_slow as _wts
import time as _tm
N = 80000
x = _N.random.randn(N)
y = _N.random.randn(N)
out = _N.empty(N)
t1 = _tm.time()
_wts.nofill(x, y, N)
t2 = _tm.time()
_wts.fill(x, y, out, N)
t3 = _tm.time()
print "nofill() ET: %.3e" % (t2-t1)
print "fill() ET: %.3e" % (t3-t2)
print "fill() is slower by factor %.3f" % ((t3-t2)/(t2-t1))
使用setup.py文件编译cython
################# setup.py
from distutils.core import setup, Extension
from distutils.sysconfig import get_python_inc
from distutils.extension import Extension
from Cython.Distutils import build_ext
incdir=[get_python_inc(plat_specific=1)]
libdir = ['/usr/local/lib']
cmdclass = {'build_ext' : build_ext}
ext_modules = Extension("way_too_slow",
["way_too_slow.pyx"],
include_dirs=incdir, # include_dirs for Mac
library_dirs=libdir)
setup(
name="way_too_slow",
cmdclass = cmdclass,
ext_modules = [ext_modules]
)
以下是跑步的典型输出&#34; run_way_too_slow.py&#34;使用C = 0.1
>>> exf("run_way_too_slow.py")
nofill() ET: 6.700e-05
fill() ET: 6.409e-04
fill() is slower by factor 9.566
C = 31的典型运行。
>>> exf("run_way_too_slow.py")
nofill() ET: 6.795e-05
fill() ET: 1.566e-03
fill() is slower by factor 23.046
我们可以看到
与分配给double相比,分配到指定的数组位置相当慢。
出于某种原因,分配速度似乎取决于计算中的操作 - 这对我来说毫无意义。
非常感谢任何见解。