双线性四边形插值的Python实现

时间:2018-03-02 14:57:42

标签: python-3.x interpolation

我试图进行双线性四边形插值。所以我有四个具有已知值的节点,我想通过插值找到位于这四个节点之间的值,但是这四个节点不形成矩形。 4-node sketch

我找到了几种方法来解决这个问题,但是它们都没有在Python中实现。是否存在已经完成的python实现的某个地方?如果不是您推荐以下两种解决方案中的哪一种?或者你会推荐另一种方法吗?

**************不同的解决方案*******************

解决方案1:

我在这里找到https://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch16.d/IFEM.Ch16.pdf,我应该解决以下方程组:set of equations,其中Ni为:N definition

最后,这导致求解一组形式的方程式:

a*x+b*y+c*xy=z1
d*x+e*y+f*xy=z2 

x和y是未知数。这可以使用fsolve以数字方式解决。

解决方案2:

此处完整解释了这一点:https://math.stackexchange.com/questions/828392/spatial-interpolation-for-irregular-grid

但它非常复杂,我认为编写代码需要更长的时间。

1 个答案:

答案 0 :(得分:0)

由于缺乏答案,我选择了第一个选项。你可以在下面找到代码。欢迎提出改进此代码的建议。

import numpy as np
from scipy.optimize import fsolve

def interpolate_quatrilateral(pt1,pt2,pt3,pt4,pt):
    '''Interpolates a value in a quatrilateral figure defined by 4 points. 
    Each point is a tuple with 3 elements, x-coo,y-coo and value.
    point1 is the lower left corner, point 2 the lower right corner,
    point 3 the upper right corner and point 4 the upper left corner.
    args is a list of coordinates in the following order:
     x1,x2,x3,x4 and x (x-coo of point to be interpolated) and y1,y2...
     code based on the theory found here:
     https://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch16.d/IFEM.Ch16.pdf'''

    coos = (pt1[0],pt2[0],pt3[0],pt4[0],pt[0],
            pt1[1],pt2[1],pt3[1],pt4[1],pt[1]) #coordinates of the points merged in tuple
    guess = np.array([0,0]) #The center of the quadrilateral seem like a good place to start
    [eta, mu] = fsolve(func=find_local_coo_equations, x0=guess, args=coos)

    densities = (pt1[2], pt2[2], pt3[2], pt4[2])
    density = find_density(eta,mu,densities)

    return density

def find_local_coo_equations(guess, *args):
    '''This function creates the transformed coordinate equations of the quatrilateral.'''

    eta = guess[0]
    mu = guess[1]

    eq=[0,0]#Initialize eq
    eq[0] = 1 / 4 * (args[0] + args[1] + args[2] + args[3]) - args[4] + \
            1 / 4 * (-args[0] - args[1] + args[2] + args[3]) * mu + \
            1 / 4 * (-args[0] + args[1] + args[2] - args[3]) * eta + \
            1 / 4 * (args[0] - args[1] + args[2] - args[3]) * mu * eta
    eq[1] = 1 / 4 * (args[5] + args[6] + args[7] + args[8]) - args[9] + \
            1 / 4 * (-args[5] - args[6] + args[7] + args[8]) * mu + \
            1 / 4 * (-args[5] + args[6] + args[7] - args[8]) * eta + \
            1 / 4 * (args[5] - args[6] + args[7] - args[8]) * mu * eta
    return eq

def find_density(eta,mu,densities):
    '''Finds the final density based on the eta and mu local coordinates calculated
    earlier and the densities of the 4 points'''
    N1 = 1/4*(1-eta)*(1-mu)
    N2 = 1/4*(1+eta)*(1-mu)
    N3 = 1/4*(1+eta)*(1+mu)
    N4 = 1/4*(1-eta)*(1+mu)
    density = densities[0]*N1+densities[1]*N2+densities[2]*N3+densities[3]*N4
    return density

pt1= (0,0,1)
pt2= (1,0,1)
pt3= (1,1,2)
pt4= (0,1,2)
pt= (0.5,0.5)
print(interpolate_quatrilateral(pt1,pt2,pt3,pt4,pt))