I am using keras with cntk as backend for Convolutional neural network. Shape of train data is (12459,49). There is some problem with input_shape. Input is numpy array.
model= Sequential()
model.add(Conv1D(nb_filter=32,filter_length=3, strides=1,input_shape=
(None,x_train.shape),padding='same', dilation_rate=1, activation='relu',
use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros',kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, bias_constraint=None))
model.add(Conv1D(nb_filter=16, filter_length=1, strides=1,padding='same',
dilation_rate=1, activation='relu', use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None))
model.add(MaxPooling1D(pool_size=2, strides=None, padding='valid'))
model.add(Dropout(dropout_rate))
model.add(Flatten())
Error:
input_variable(shape, dtype, needs_gradient, is_sparse, dynamic_axes, name)
3504 # TODO sparse for numpy arrays
3505
-> 3506 return input_variable(shape, is_sparse, dtype, needs_gradient,
name, dynamic_axes)
3507
3508 @typemap
OverflowError: in method 'input_variable', argument 3 of type '::CNTK::DataType'
It shows error: in method 'input_variable', argument 3 of type '::CNTK::DataType' at first convlayer. I read the document of cntk input_variable and keras document for conv1D layer. I cannot specify the dtype in keras layer but as per my understanding cntk does require dtype in input_variable function. What can be the solution?