我使用python + keras训练和加载模型如下:
# create and fit the LSTM network
if sys.argv[1] == 'train':
model = Sequential()
model.add(LSTM(10, input_shape=(trainX.shape[1], trainX.shape[2])))
model.add(Dense(1))
model.compile(loss='mean_absolute_error', optimizer='adam')
# model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=10, batch_size=1, verbose=0)
model.save_weights(sys.argv[3])
model.save('my_model.h5', overwrite=True)
else:
print("Loading model %s" % sys.argv[3])
model = load_model(sys.argv[3])
所以,我的程序花了很多时间来加载受过训练的模型,你能帮我改进这个问题吗?