受hadley's nifty gather
approach in this answer的启发我试图将tidyr的gather()
和spread()
与正则表达式regex
结合使用,但我似乎得到了regex
上的错误。
我确实研究了几个regex
个问题; this one,this one以及regex101.com。我尝试使用regex
,starts_with()
和ends_with()
启发matches()
来绕过regex
,但没有运气。
我在这里问,希望有人可以证明我弄错了,我可以解决它,最好是使用this question中的选择助手。
我需要选择2 .
- 一组到最后一个.
,一组由最后一个# install.packages(c("tidyverse"), dependencies = TRUE)
require(tidyverse)
组成,我在下面做了两个例子,一个是我的代码工作和我被卡住的地方。
首先是正在运作的例子,
myData1 <- tibble(
id = 1:10,
Wage.1997.1 = c(NA, 32:38, NA, NA),
Wage.1997.2 = c(NA, 12:18, NA, NA),
Wage.1998.1 = c(NA, 42:48, NA, NA),
Wage.1998.2 = c(NA, 2:8, NA, NA),
Wage.1998.3 = c(NA, 42:48, NA, NA),
Job.Type.1997.1 = NA,
Job.Type.1997.2 = c(NA, rep(c('A', 'B'), 4), NA),
Job.Type.1998.1 = c(NA, rep(c('A', 'B'), 4), NA),
Job.Type.1998.2 = c(NA, rep(c('A', 'B'), 4), NA)
)
第一个工作的数据集如下所示,
gather()
这就是我myData1 %>% gather(key, value, -id) %>%
extract(col = key, into = c("variable", "id.job"), regex = "(.*?\\..*?)\\.(.)$") %>%
spread(variable, value)
#> # A tibble: 30 x 6
#> id id.job Job.Type.1997 Job.Type.1998 Wage.1997 Wage.1998
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 1 <NA> <NA> <NA> <NA>
#> 2 1 2 <NA> <NA> <NA> <NA>
#> 3 1 3 <NA> <NA> <NA> <NA>
#> 4 2 1 <NA> A 32 42
#> 5 2 2 A A 12 2
#> 6 2 3 <NA> <NA> <NA> 42
#> 7 3 1 <NA> B 33 43
#> 8 3 2 B B 13 3
#> 9 3 3 <NA> <NA> <NA> 43
#> 10 4 1 <NA> A 34 44
#> # ... with 20 more rows
的方式,
regex
它有效,我怀疑我用myData2 <- tibble(
id = 1:10,
Wage.1997.1 = c(NA, 32:38, NA, NA),
Wage.1997.12 = c(NA, 12:18, NA, NA),
Wage.1998.1 = c(NA, 42:48, NA, NA),
Wage.1998.12 = c(NA, 2:8, NA, NA),
Wage.1998.13 = c(NA, 42:48, NA, NA),
Job.Type.1997.1 = NA,
Job.Type.1997.12 = c(NA, rep(c('A', 'B'), 4), NA),
Job.Type.1998.1 = c(NA, rep(c('A', 'B'), 4), NA),
Job.Type.1998.12 = c(NA, rep(c('A', 'B'), 4), NA)
)
过度了,但它确实有效。但是,我的真实数据最后可以有一个或两个摘要,即
第二个数据,我卡住了,
(0[0-1]|1[0-9])$
现在,我在第二组中使用\d{1}|\d{2}
,我也尝试了myData2 %>% gather(key, value, -id) %>%
extract(col = key, into = c("variable", "id.job"),
regex = "(.*?\\..*?)\\.(0[0-1]|1[0-9])$") %>%
spread(variable, value)
之类的内容,但这样做也不起作用。
#> # A tibble: 30 x 6
#> id id.job Job.Type.1997 Job.Type.1998 Wage.1997 Wage.1998
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 1 <NA> <NA> <NA> <NA>
#> 2 1 12 <NA> <NA> <NA> <NA>
#> 3 1 13 <NA> <NA> <NA> <NA>
#> 4 2 1 <NA> A 32 42
#> 5 2 12 A A 12 2
#> 6 2 13 <NA> <NA> <NA> 42
#> 7 3 1 <NA> B 33 43
#> 8 3 12 B B 13 3
#> 9 3 13 <NA> <NA> <NA> 43
#> 10 4 1 <NA> A 34 44
#> # ... with 20 more rows
预期的输出将是这样的,
starts_with()
使用选择帮助(例如ends_with()
,matches()
,dry-validation
等简单解决方案tidyselect,我们将不胜感激。< / p>
答案 0 :(得分:3)
我们可以更改regex
中的extract
以匹配字符,并从字符串的开头((.*)
)后跟一个点捕获为组(^
)( \\.
)和一个或多个不是作为一个组(([^.]+)
)捕获的点的字符,直到字符串的结尾($
)
myData2 %>%
gather(key, value, -id) %>%
extract(col = key, into = c("variable", "id.job"), "^(.*)\\.([^.]+)$") %>%
spread(variable, value)
# A tibble: 30 x 6
# id id.job Job.Type.1997 Job.Type.1998 Wage.1997 Wage.1998
# * <int> <chr> <chr> <chr> <chr> <chr>
# 1 1 1 <NA> <NA> <NA> <NA>
# 2 1 12 <NA> <NA> <NA> <NA>
# 3 1 13 <NA> <NA> <NA> <NA>
# 4 2 1 <NA> A 32 42
# 5 2 12 A A 12 2
# 6 2 13 <NA> <NA> <NA> 42
# 7 3 1 <NA> B 33 43
# 8 3 12 B B 13 3
# 9 3 13 <NA> <NA> <NA> 43
#10 4 1 <NA> A 34 44
# ... with 20 more rows