我正在尝试使用Keras实现神经样式传输,并尽量保持简单。在尝试使用keras的backend.gradients()函数查找渐变时,它返回[None]。我的代码如下:
content_image = cv2.imread("C:/Users/Max/Desktop/IMG_20170331_103755.jpg")
content_image = cv2.resize(content_image, (512,512))
style_image = cv2.imread("C:/Users/Max/Desktop/starry.jpg")
style_image = cv2.resize(style_image, (512,512))
content_array = np.asarray(content_image, dtype=np.float32)
content_array = np.expand_dims(content_array, axis=0)
style_array = np.asarray(style_image, dtype=np.float32)
style_array = np.expand_dims(style_array, axis=0)
# Constants:
epochs = 1
height = 512
width = 512
num_channels = 3
step_size = 10
content_layer = ['block2_conv2']
style_layer = ['block1_conv2', 'block2_conv2', 'block3_conv3','block4_conv3', 'block5_conv3']
loss_total = backend.variable(0.0)
# VGG16 Model:
model = VGG16(input_shape = [height, width, num_channels],weights='imagenet', include_top=False)
# Defining losses:
def content_loss(Content, Mixed):
content_loss = backend.mean(backend.square(Mixed - Content))
return content_loss
def gram(layer):
flat = backend.reshape(layer, shape=[1, -1])
gram = backend.dot(flat, backend.transpose(flat))
return gram
def style_loss(Style, Mixed):
S_G = gram(Style)
M_G = gram(Mixed)
size = height*width
return backend.sum(backend.square(S_G - M_G)) / (4. * (num_channels ** 2) * (size ** 2))
'''
def denoise(Image):
loss = backend.mean(backend.abs(Image[:,1:,:,:] - Image[:,:-1,:,:]) + backend.abs(Image[:,:,1:,:] - Image[:,:,:-1,:]))
return loss
'''
# Backend Functions:
output_c = backend.function(inputs = [model.layers[0].input] , outputs = [model.get_layer(content_layer[0]).output])
output_s = backend.function(inputs = [model.layers[0].input] , outputs = [model.get_layer(layer).output for layer in style_layer])
content_output = output_c([content_array])
style_output = output_s([style_array])
# Randomly generated image:
Mixed = np.random.uniform(0, 255, [1, height, width, 3]) - 128
# Loop:
for i in range(epochs):
mixed_c = output_c([Mixed])
mixed_c = mixed_c[0]
loss_c = content_loss(content_output[0], mixed_c)
total = []
mixed_s = output_s([Mixed])
for i in range(len(style_layer)):
style = style_loss(style_output[i], mixed_s[i])
total.append(style)
loss_s = backend.sum(total)
#loss_d = denoise(Mixed)
loss_total = w_c * loss_c + w_s * loss_s #+ w_d * loss_d
gradient = backend.gradients(loss_total, Mixed)
gradient = np.squeeze(gradient)
step_size = step_size / (np.std(gradient) + 1e-8)
Mixed -= gradient * step_size
我应该做些什么改变才能使渐变正常工作。我对于出了什么问题一无所知。
谢谢!
答案 0 :(得分:0)
您正在采用Mixed
的渐变,这是一个numpy数组,而不是变量。您需要定义一个张量,其值为Mixed
。
来自Keras文档:
梯度
keras.backend.gradients(loss, variables)
返回
variables
w.r.t的渐变。loss
。参数
损失:标量张量最小化。
变量:变量列表。