这里我使用下面的脚本来删除图像附近的黑点并删除数字上方的直线但是它除去了噪音但是不正确。
def get_string(img_path):
# Read image with opencv
img = cv2.imread(img_path)
# Convert to gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=12)
img = cv2.erode(img, kernel, iterations=12)
# Write image after removed noise
cv2.imwrite(src_path + "removed_noise.png", img)
# Apply threshold to get image with only black and white
img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
cv2.imwrite(src_path + "thres.png", img)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open(src_path + "vertical_final.jpg"))
# Remove template file
#os.remove(temp)
return result
但它无法正常工作。
输入图片:
我需要一些人帮助我摆脱这些问题,我非常感激。
输出图像: -
源代码: -
def get_string(img_path):
# Read image with opencv
img = cv2.imread(img_path)
# Convert to gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1,20), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
#img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
kernel = np.ones((1, 1), np.uint8)
#img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
cv2.imwrite(src_path + "removed_noise.png", img)
img3 = cv2.subtract(cv2.imread(src_path + "removed_noise.png"),cv2.imread(src_path + "tax_amount.png"))
cv2.imwrite(src_path + "removed_noise_makes_00.png", img3)
lower_black = np.array([0,0,0], dtype = "uint16")
upper_black = np.array([70,70,70], dtype = "uint16")
black_mask = cv2.inRange(img3, lower_black, upper_black)
black_mask[np.where((black_mask == [0] ).all(axis = 1))] = [255]
opening = cv2.morphologyEx(black_mask, cv2.MORPH_CLOSE, kernel)
cv2.imwrite(src_path + "removed_noise_makes_00_1.png", opening)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open(src_path + "removed_noise_makes_00_1.png"))
# Remove template file
#os.remove(temp)
return result
答案 0 :(得分:2)
你在哪里
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=12)
使用1x1结构元素(SE)进行12次扩张。除非OpenCV对这样的SE做了特别的事情,否则这段代码根本不应该改变你的图像。
你应该创建一个更大的SE:
kernel = np.ones((7, 7), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
这将首先扩大然后侵蚀结果。这实现了小(薄)黑区消失。这些是SE不适合的地区。这与
相同img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
要删除长线,您需要应用具有细长SE的结束:
kernel = np.ones((1, 30), np.uint8)
line = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
这只留下水平线。 img
和line
的区别在于没有该行的文字。
如果您认为img
为line
和text
的总和,则img - line
将为text
。但是,仍有一个小问题:img
有白色背景(255)和黑色前景。实际上,它是img = 255 - text - line
,而您在上面找到的line
图片实际上是255 - line
,因为它还具有白色背景。因此,直接采取差异不会产生预期的效果。
解决方案是首先反转你的图像:
img = 255 - img;
line = 255 - line;
text = img - line;