我正在尝试使用opencv读取我的电表LCD显示器上的值。从我的图片中我能够使用HoughCircles方法找到仪表,我能够使用轮廓在仪表上找到LCD显示器,液晶显示器不是' t如此清晰,我再次搜索轮廓以从显示中提取数字。现在我无法使用tesseract或ssocr读取显示屏上的值,如何读取LCD显示屏上的值。我刚开始使用opencv(初学者),不知道从这里开始的正确方法,如果我的方法是正确的,将不胜感激任何帮助。下面是我的代码片段,仪表图片链接在评论中。
def process_image(path, index):
img = cv2.imread(path)
img = cv2.resize(img,(0,0),fx=2.0,fy=2.0)
height, width, depth = img.shape
print("\n---------------------------------------------\n")
print("In Process Image Path is %s height is %d Width is %d depth is %d" %(path, height, width, depth))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 15)
circles = cv2.HoughCircles(blur, cv2.HOUGH_GRADIENT,1.2,100)
# ensure at least one circles is found, which is our meter
if circles is not None:
circles = np.uint16(np.around(circles))
print("Meter Found")
for i in circles[0]:
CenterX = i[0]
CenterY = i[1]
Radius = i[2]
circle_img = np.zeros((height, width), np.uint8)
cv2.circle(circle_img, (CenterX, CenterY), Radius, 1, thickness=-1)
masked_data = cv2.bitwise_and(img, img, mask=circle_img)
output = masked_data.copy()
cv2.circle(output, (i[0], i[1]), i[2], (0, 255, 0), 2)
cv2.circle(output, (i[0], i[1]), 2, (0, 0, 255), 3)
cv2.imwrite("output_" + str(index) + ".jpg", output)
break
gray = cv2.cvtColor(output, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray,(5,5),1)
edged = cv2.Canny(blurred, 5,10,200)
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
displayCnt = None
contour_list = []
# loop over the contours
for c in cnts:
# approximate the contour
peri = 0.02 * cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c,peri, True)
# if the contour has four vertices, then we have found
# the meter display
if len(approx) == 4:
contour_list.append(c)
cv2.contourArea(c)
displayCnt = approx
break
warped = four_point_transform(gray, displayCnt.reshape(4, 2))
output = four_point_transform(output, displayCnt.reshape(4, 2))
thresh = cv2.adaptiveThreshold(warped, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 31, 2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
digitCnts = []
# loop over the digit area candidates
for c in cnts:
# compute the bounding box of the contour
(x, y, w, h) = cv2.boundingRect(c)
# if the contour is sufficiently large, it must be a digit
if (w > 5 and w < 100) and (h >= 15 and h <= 150) :
digitCnts.append(c)
# sort the contours from left-to-right, then initialize the
# actual digits themselves
digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0]
mask = np.zeros(thresh.shape, np.uint8)
cv2.drawContours(mask, digitCnts, -80, (255, 255, 255),-1)
mask = cv2.bitwise_not(mask)
mask = cv2.resize(mask, (0, 0), fx=2.0, fy=2.0)
result = os.popen('/usr/local/bin/ssocr --number-digits=-1 -t 10 Mask.jpg')
output = result.read()
print("Output is " + output)
output = output[2:8]
return str(round(float(output) * 0.1, 1))
else:
print("Circle not Found")
print("\n---------------------------------------------\n")
return None