我在Python中实现segnet。以下是代码。
img_w = 480
img_h = 360
pool_size = 2
def build_model(img_w, img_h, pool_size):
n_labels = 12
kernel = 3
encoding_layers = [
Conv2D(64, (kernel, kernel), input_shape=(img_h, img_w, 3), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(64, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size = (pool_size,pool_size)),
Convolution2D(128, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(128, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size = (pool_size,pool_size)),
Convolution2D(256, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size = (pool_size,pool_size)),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size = (pool_size,pool_size)),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size = (pool_size,pool_size)),
]
autoencoder = models.Sequential()
autoencoder.encoding_layers = encoding_layers
for l in autoencoder.encoding_layers:
autoencoder.add(l)
decoding_layers = [
UpSampling2D(),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(),
Convolution2D(256, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(128, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(),
Convolution2D(128, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(64, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(),
Convolution2D(64, (kernel, kernel), padding='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(n_labels, (1, 1), padding='valid', activation="sigmoid"),
BatchNormalization(),
]
autoencoder.decoding_layers = decoding_layers
for l in autoencoder.decoding_layers:
autoencoder.add(l)
autoencoder.add(Reshape((n_labels, img_h * img_w)))
autoencoder.add(Permute((2, 1)))
autoencoder.add(Activation('softmax'))
return autoencoder
model = build_model(img_w, img_h, pool_size)
但它让我错了。
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-21-051f06a53a14> in <module>()
----> 1 model = build_model(img_w, img_h, pool_size)
<ipython-input-20-c37fd94c8641> in build_model(img_w, img_h, pool_size)
119 autoencoder.add(l)
120
--> 121 autoencoder.add(Reshape((n_labels, img_h * img_w)))
122 autoencoder.add(Permute((2, 1)))
123 autoencoder.add(Activation('softmax'))
ValueError: total size of new array must be unchanged
我看不出任何错误原因。当我将img_w和img_h更改为256时,此错误已解决,但问题是不是图像大小或原始数据集,因此我无法使用它。怎么解决这个?一点帮助和见解将不胜感激。
答案 0 :(得分:6)
问题是你正在执行(2, 2)
下采样5次,让我们跟踪形状:
(360, 480) -> (180, 240) -> (90, 120) -> (45, 60) -> (22, 30) -> (11, 15)
现在进行上采样:
(11, 15) -> (22, 30) -> (44, 60) -> (88, 120) -> (176, 240) -> (352, 480)
因此,当您尝试使用原始形状reshape
输出时 - 由于模型不匹配而引发问题。
可能的解决方案:
调整图片大小,使两个输入尺寸均可被32
整除(例如(352, 480)
或(384, 480)
。
在第3次上采样后添加ZeroPadding2D(((1, 0), (0, 0)))
,将形状从(44, 60)
更改为(45, 60)
,这将使您的网络以良好的输出形状完成。
其他问题:
请注意,最后MaxPooling2D
后面跟着第一个Upsampling2D
。这可能是一个问题,因为这是一个无用的网络瓶颈。