我有一个看起来像
的pandas数据框 a b c y
0 0.004539 0.818678 194.381891 0
1 0.001367 0.243724 245.378577 0
2 1.579454 0.465842 849.943583 0
3 7.189778 0.456895 129.707932 0
4 97.743634 0.319419 120.998294 1
我想将a,b,c列分为feature和y分为标签,以便将它们用于scikit-learn SVC分类器。
我做了
features = df[['a', 'b', 'c']]
labels = df['y']
d_train, d_test, l_train, l_test = \
train_test_split(features, labels,
test_size=0.3, random_state=0)
并通过
训练模型model = SVC()
model.fit(d_train, l_train)
但这给了我一个错误
'SVC' object is not iterable
我没有得到我所缺少的东西。
进口:
import pandas as pd
import numpy as np
import sklearn as sk
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score