pandas dataframe - 每个唯一用户的组艺术家

时间:2018-01-29 01:57:56

标签: python pandas dataframe pandas-groupby

为了避免重复同一个用户,我希望使用pandas {k: artist1, artist2, artist3, etc}函数巧妙地组织groupby的嵌套字典。这是样本数据(我的直觉告诉我链接一个agg函数?)

...喜欢df.groupby('users')

    users                                       artist
0   00001411dc427966b17297bf4d69e7e193135d89    the most serene republic
1   00001411dc427966b17297bf4d69e7e193135d89    stars
2   00001411dc427966b17297bf4d69e7e193135d89    broken social scene
3   00001411dc427966b17297bf4d69e7e193135d89    have heart
4   00001411dc427966b17297bf4d69e7e193135d89    luminous orange
5   00001411dc427966b17297bf4d69e7e193135d89    boris
6   00001411dc427966b17297bf4d69e7e193135d89    arctic monkeys
7   00001411dc427966b17297bf4d69e7e193135d89    bright eyes
8   00001411dc427966b17297bf4d69e7e193135d89    coaltar of the deepers
9   00001411dc427966b17297bf4d69e7e193135d89    polar bear club
10  00001411dc427966b17297bf4d69e7e193135d89    the libertines
11  00001411dc427966b17297bf4d69e7e193135d89    death from above 1979
12  00001411dc427966b17297bf4d69e7e193135d89    owl city
13  00001411dc427966b17297bf4d69e7e193135d89    coldplay
14  00001411dc427966b17297bf4d69e7e193135d89    okkervil river
15  00001411dc427966b17297bf4d69e7e193135d89    jim sturgess
16  00001411dc427966b17297bf4d69e7e193135d89    deerhoof
17  00001411dc427966b17297bf4d69e7e193135d89    fear before the march of flames
18  00001411dc427966b17297bf4d69e7e193135d89    breathe carolina
19  00001411dc427966b17297bf4d69e7e193135d89    mstrkrft

1 个答案:

答案 0 :(得分:2)

我相信你在这里寻找agg + df.groupby('users').artist.apply(list).to_dict() {'00001411dc427966b17297bf4d69e7e193135d89': ['the most serene republic', 'stars', 'broken social scene', 'have heart', 'luminous orange', 'boris', ... ] }

{{1}}