名称'DataFrameSelector'未定义

时间:2018-01-28 21:34:12

标签: python scikit-learn pipeline

我目前正在阅读“使用Scikit-Learn& TensorFlow进行动手机器学习”。当我尝试重新创建Transformation Pipelines代码时出错。我该如何解决这个问题?

代码:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([('imputer', Imputer(strategy = "median")),
                        ('attribs_adder', CombinedAttributesAdder()),
                        ('std_scaler', StandardScaler()),
                        ])

housing_num_tr = num_pipeline.fit_transform(housing_num)

from sklearn.pipeline import FeatureUnion

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

num_pipeline = Pipeline([
                         ('selector', DataFrameSelector(num_attribs)),
                         ('imputer', Imputer(strategy = "median")),
                         ('attribs_adder', CombinedAttributesAdder()),
                         ('std_scaler', StandardScaler()),
                        ])

cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)), 
                         ('label_binarizer', LabelBinarizer()),
                        ])

full_pipeline = FeatureUnion(transformer_list = [("num_pipeline", num_pipeline), 
                                                 ("cat_pipeline", cat_pipeline),
                                                ])

# And we can now run the whole pipeline simply:

housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared

错误:

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-350-3a4a39e5bc1c> in <module>()
     43 
     44 num_pipeline = Pipeline([
---> 45                          ('selector', DataFrameSelector(num_attribs)),
     46                          ('imputer', Imputer(strategy = "median")),
     47                          ('attribs_adder', CombinedAttributesAdder()),

NameError: name 'DataFrameSelector' is not defined

5 个答案:

答案 0 :(得分:13)

找不到

DataFrameSelector,需要导入。它不是sklearn的一部分,但sklearn-features中提供了相同名称的内容:

from sklearn_features.transformers import DataFrameSelector

DOCS

答案 1 :(得分:4)

from sklearn.base import BaseEstimator, TransformerMixin

class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names=attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

这应该有效。

答案 2 :(得分:1)

如果您通过Sklearn和Tensorflow关注机器学习之手, 在接下来的页面上,一个定制的Dataframe生成器

from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

答案 3 :(得分:0)

from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

可能有效。

答案 4 :(得分:0)

您似乎正在从事《California Housing Price Predictions》一书中的一个项目 Hands-On Machine Learning with Scikit-learn and TensorFlow

错误

<块引用>

NameError: name 'DataFrameSelector' 未定义

出现是因为 sklearn 中没有 DataFrameSelector 转换器。要克服此错误,您需要为此编写自己的自定义转换器。

在本书中,您可以在下一页找到 DataFrameSelector 转换器代码,但我也会在下面复制此代码。

from sklearn.base import BaseEstimator, TransformerMixin

class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

BaseEstimatorTransformerMixin 类用于继承 fit()transform()fit_transform() 方法。

现在 sklearn-pandas 中还有另一个类 DataFrameMapper 也有类似的目标。 您可以从以下链接找到有关此类的详细信息:
DataFrameMapper