左连接操作永远运行

时间:2018-01-28 15:08:56

标签: scala apache-spark join apache-spark-sql

我需要加入应用Left join的DataFrames。

df1 =

+----------+---------------+
|product_PK| rec_product_PK|
+----------+---------------+
|       560|            630|
|       710|            240|
|       610|            240|

df2 =

+----------+---------------+-----+
|product_PK| rec_product_PK| rank|
+----------+---------------+-----+
|       560|            610|    1|
|       560|            240|    1|
|       610|            240|    0|

问题是df1只包含500行,而df2包含600.000.000行和24个分区。我的左连接需要一段时间才能执行。我等了5个小时才完成。

val result = df1.join(df2,Seq("product_PK","rec_product_PK"),"left")

结果应包含500行。我使用以下参数从spark-shell执行代码:

spark-shell -driver-memory 10G --driver-cores 4 --executor-memory 10G --num-executors 2 --executor-cores 4

如何加快这个过程?

更新

df2.explain(true)的输出:

== Parsed Logical Plan ==
Repartition 5000, true
+- Project [product_PK#15L AS product_PK#195L, product_PK#189L AS reco_product_PK#196L, col2#190 AS rank#197]
   +- Project [product_PK#15L, array_elem#184.product_PK AS product_PK#189L, array_elem#184.col2 AS col2#190]
      +- Project [product_PK#15L, products#16, array_elem#184]
         +- Generate explode(products#16), true, false, [array_elem#184]
            +- Relation[product_PK#15L,products#16] parquet

== Analyzed Logical Plan ==
product_PK: bigint, rec_product_PK: bigint, rank: int
Repartition 5000, true
+- Project [product_PK#15L AS product_PK#195L, product_PK#189L AS reco_product_PK#196L, col2#190 AS rank_product_family#197]
   +- Project [product_PK#15L, array_elem#184.product_PK AS product_PK#189L, array_elem#184.col2 AS col2#190]
      +- Project [product_PK#15L, products#16, array_elem#184]
         +- Generate explode(products#16), true, false, [array_elem#184]
            +- Relation[product_PK#15L,products#16] parquet

== Optimized Logical Plan ==
Repartition 5000, true
+- Project [product_PK#15L, array_elem#184.product_PK AS rec_product_PK#196L, array_elem#184.col2 AS rank#197]
   +- Generate explode(products#16), true, false, [array_elem#184]
      +- Relation[product_PK#15L,products#16] parquet

== Physical Plan ==
Exchange RoundRobinPartitioning(5000)
+- *Project [product_PK#15L, array_elem#184.product_PK AS rec_PK#196L, array_elem#184.col2 AS rank#197]
   +- Generate explode(products#16), true, false, [array_elem#184]
      +- *FileScan parquet [product_PK#15L,products#16] Batched: false, Format: Parquet, Location: InMemoryFileIndex[s3://data/result/2017-11-27/..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<product_PK:bigint,products:array<struct<product_PK:bigint,col2:int>>>

2 个答案:

答案 0 :(得分:2)

您应该使用不同类型的联接。默认情况下,您所进行的连接假设两个数据帧都很大,因此进行了大量的重排(通常每行都会进行哈希处理,数据将根据哈希值进行混洗,然后执行每个执行程序)。您可以通过在结果上使用说明来查看执行计划来查看此内容。

请考虑使用广播提示:

val result = df2.join(broadcast(df1),Seq("product_PK","rec_product_PK"),"right")

请注意,我翻转了连接顺序,以便广播出现在连接参数中。广播功能是org.apache.spark.sql.functions

的一部分

这将进行广播连接,而df1将被复制到所有执行器,并且加入将在本地完成,从而避免需要对大df2进行随机播放。

答案 1 :(得分:1)

鉴于versions:use-latest-releases -DallowMajorUpdates=false的尺寸非常小,可能值得考虑先将df1放入列表中,然后将列表中的大collect过滤为相对较小的df2数据框,然后用于与left的{​​{1}}联接:

df1