基于df中不同列的其他变量创建新变量

时间:2018-01-27 19:31:15

标签: r function loops dataframe

我正在尝试在数据框中创建一个新变量(incomeX) 基于colnames的最后一个字符,如果:

      income1 income2 income3 income4 income5
1        0       1       0       0       0
2        1       0       0       0       0
3        1       0       0       0       0
4        1       0       0       0       0
5        1       0       0       0       0
6        1       0       0       0       0
7        0       1       0       0       0
8        1       0       0       0       0
9        1       0       0       0       0
10       0       0       0       1       0

我会得到:

     income1 income2 income3 income4 income5 incomeX
1        0       1       0       0       0      2
2        1       0       0       0       0      1
3        1       0       0       0       0      1
4        1       0       0       0       0      1
5        1       0       0       0       0      1
6        1       0       0       0       0      1
7        0       1       0       0       0      2
8        1       0       0       0       0      1
9        1       0       0       0       0      1
10       0       0       0       1       0      4

2 个答案:

答案 0 :(得分:1)

您可以使用基础r中的var xv = 0; var yv = 0; var itemx = firebase.database().ref().child("item").child("xval"); itemx.on('value', function(xvalue){ xv = xvalue.val(); }); var itemy = firebase.database().ref().child("item").child("yval"); itemy.on('value', function(yvalue){ yv = yvalue.val(); }); var start = graph.grid[aa][bb]; var end = graph.grid[xv][yv]; var result = astar.search(graph, start, end); 来解决此问题:

which

答案 1 :(得分:0)

以下是使用tidyverse的方法。我们将数据转换为整洁的数据形式,将字符income与数字分开,选择值== 1的行,然后使用rowId将结果合并回原始数据。

inputData <- " rowId     income1 income2 income3 income4 income5
1        0       1       0       0       0
2        1       0       0       0       0
3        1       0       0       0       0
4        1       0       0       0       0
5        1       0       0       0       0
6        1       0       0       0       0
7        0       1       0       0       0
8        1       0       0       0       0
9        1       0       0       0       0
10       0       0       0       1       0
"
data <- read.table(text=inputData,header=TRUE)
library(dplyr)
library(tidyr)
data %>% gather(variable,value,-rowId) %>%
     extract(variable,into = c("varname", "number"), 
             regex = "([A-Za-z]+)([0-9]+)") %>%
     filter(value == 1) %>% rename(incomeX = number) %>%
     select(-value,-varname) %>%
     left_join(data,.) %>% arrange(rowId)

...和输出:

+      left_join(data,.) %>% arrange(rowId)
Joining, by = "rowId"
   rowId income1 income2 income3 income4 income5 incomeX
1      1       0       1       0       0       0       2
2      2       1       0       0       0       0       1
3      3       1       0       0       0       0       1
4      4       1       0       0       0       0       1
5      5       1       0       0       0       0       1
6      6       1       0       0       0       0       1
7      7       0       1       0       0       0       2
8      8       1       0       0       0       0       1
9      9       1       0       0       0       0       1
10    10       0       0       0       1       0       4
>