dask read_sql_table在带有数字日期时间的sqlite表上失败

时间:2018-01-25 15:29:40

标签: pandas sqlalchemy dask

我已经获得了一些我需要读入dask数据帧的大型sqlite表。这些表具有以日期时间(ISO格式的字符串)存储为sqlite NUMERIC数据类型的列。我能够使用Pandas'读取这种数据。 read_sql_table。但是,来自dask的同一调用会产生错误。有人可以建议一个好的解决方法吗? (我不知道将这些列的sqlite数据类型从NUMERIC更改为TEXT的简单方法。)我在下面粘贴了一个最小的例子。

import sqlalchemy
import pandas as pd
import dask.dataframe as ddf

connString = "sqlite:///c:\\temp\\test.db"
engine = sqlalchemy.create_engine(connString)
conn = engine.connect()
conn.execute("create table testtable (uid integer Primary Key, datetime NUM)")
conn.execute("insert into testtable values (1, '2017-08-03 01:11:31')")
print(conn.execute('PRAGMA table_info(testtable)').fetchall())
conn.close()

pandasDF = pd.read_sql_table('testtable', connString, index_col='uid', parse_dates={'datetime':'%Y-%m-%d %H:%M:%S'})
pandasDF.head()

daskDF = ddf.read_sql_table('testtable', connString, index_col='uid',  parse_dates={'datetime':'%Y-%m-%d %H:%M:%S'})

这是追溯:

Warning (from warnings module):
  File "C:\Program Files\Python36\lib\site-packages\sqlalchemy\sql\sqltypes.py", line 596
    'storage.' % (dialect.name, dialect.driver))
SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must convert from floating point - rounding errors and other issues may occur. Please consider storing Decimal numbers as strings or integers on this platform for lossless storage.
Traceback (most recent call last):
  File "<pyshell#2>", line 1, in <module>
    daskDF = ddf.read_sql_table('testtable', connString, index_col='uid',  parse_dates={'datetime':'%Y-%m-%d %H:%M:%S'})
  File "C:\Program Files\Python36\lib\site-packages\dask\dataframe\io\sql.py", line 98, in read_sql_table
    head = pd.read_sql(q, engine, **kwargs)
  File "C:\Program Files\Python36\lib\site-packages\pandas\io\sql.py", line 416, in read_sql
    chunksize=chunksize)
  File "C:\Program Files\Python36\lib\site-packages\pandas\io\sql.py", line 1104, in read_query
    parse_dates=parse_dates)
  File "C:\Program Files\Python36\lib\site-packages\pandas\io\sql.py", line 157, in _wrap_result
    coerce_float=coerce_float)
  File "C:\Program Files\Python36\lib\site-packages\pandas\core\frame.py", line 1142, in from_records
    coerce_float=coerce_float)
  File "C:\Program Files\Python36\lib\site-packages\pandas\core\frame.py", line 6304, in _to_arrays
    data = lmap(tuple, data)
  File "C:\Program Files\Python36\lib\site-packages\pandas\compat\__init__.py", line 129, in lmap
    return list(map(*args, **kwargs))
TypeError: must be real number, not str

编辑:@mdurant的评论让我想知道这是否是sqlalchemy中的一个错误。以下代码提供与pandas相同的错误消息:

import sqlalchemy as sa
from sqlalchemy import text

m = sa.MetaData()
table = sa.Table('testtable', m, autoload=True, autoload_with=engine)
resultList = conn.execute(sa.sql.select(table.columns).select_from(table)).fetchall()
print(resultList)

resultList2 = conn.execute(sa.sql.select(columns=[text('uid'),text('datetime')], from_obj = text('testtable'))).fetchall() 
print(resultList2)

Traceback (most recent call last):

  File "<ipython-input-20-188c84a35d95>", line 1, in <module>
    print(resultList)

  File "c:\program files\python36\lib\site-packages\sqlalchemy\engine\result.py", line 156, in __repr__
    return repr(sql_util._repr_row(self))

  File "c:\program files\python36\lib\site-packages\sqlalchemy\sql\util.py", line 329, in __repr__
    ", ".join(trunc(value) for value in self.row),

TypeError: must be real number, not str

1 个答案:

答案 0 :(得分:2)

令人费解。 以下是一些进一步的信息,希望可以得到答案。

正在相关行执行的查询是

pd.read_sql(sql.select(table.columns).select_from(table),
    engine, index_col='uid')

在您显示时失败(此处limit不相关)。

但是,同一查询的文本版本

sql.select(table.columns).select_from(table).compile().string
    -> 'SELECT testtable.uid, testtable.datetime \nFROM testtable'
pd.read_sql('SELECT testtable.uid, testtable.datetime \nFROM testtable',
    engine, index_col='uid')  # works fine

以下解决方法(在查询中使用强制转换)确实有效(但不是很漂亮):

import sqlalchemy as sa
engine = sa.create_engine(connString)
table = sa.Table('testtable', m, autoload=True, autoload_with=engine)
uid, dt = list(table.columns)
q = sa.select([dt.cast(sa.types.String)]).select_from(table)
daskDF = ddf.read_sql_table(q, connString, index_col=uid.label('uid'))

-edit-

更简单的形式似乎也有效(见评论)

daskDF = ddf.read_sql_table('testtable', connString, index_col='uid',
    columns=['uid', sa.sql.column('datetime').cast(sa.types.String).label('datet‌​ime')])