总之,我希望能够在实时学习时可视化列车/测试数据
下面是我目前可视化进展的方式:batch_size = 100 epochs = 30 init = tf.global_variables_initializer() samples = [] with tf.Session() as sess: sess.run(init) for epoch in range(epochs): num_batches = mnist.train.num_examples // batch_size for i in range(num_batches): batch = mnist.train.next_batch(batch_size) batch_images = batch[0].reshape((batch_size, 784)) batch_images = batch_images * 2 -1 batch_z = np.random.uniform(-1,1,size=(batch_size, 100)) _ = sess.run(D_trainer, feed_dict={real_images:batch_images, z:batch_z}) _ = sess.run(G_trainer, feed_dict={z:batch_z}) print("ON EPOCH {}".format(epoch)) sample_z = np.random.uniform(-1,1, size=(1, 100)) gen_samples = sess.run(generator(z, reuse=True), feed_dict={z:sample_z}) samples.append(gen_samples) new_samples = [] #saver = tf.train.Saver(var_list=g_vars) with tf.Session() as sess: #saver.restore(sess,"...") for x in range(5): sample_z = np.random.uniform(-1,1, size=(1, 100)) gen_samples = sess.run(generator(z, reuse=True), feed_dict={z:sample_z}) new_samples.append(gen_samples) plt.imshow(new_samples[0].reshape(28,28))
这就是我通过实时情感分析实时图形化图形的方法 在另一个终端上运行它。
import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib import style import time style.use("ggplot") fig = plt.figure() ax1 = fig.add_subplot(1,1,1) def animate(i): pullData = open("twitter-out.txt","r").read() lines = pullData.split('\n') xar = [] yar = [] x = 0 y = 0 for l in lines[-200:]: x += 1 if "pos" in l: y += 1 elif "neg" in l: y -= 1 xar.append(x) yar.append(y) ax1.clear() ax1.plot(xar,yar) ani = animation.FuncAnimation(fig, animate, interval=1000) plt.show()
我还附上了一个Youtube链接,以进一步明确我遇到的问题。我希望能够在训练时看到和听到图像/语音。
答案 0 :(得分:0)
如果您对训练曲线感兴趣,请查看以下帖子:Keras + TensorFlow Realtime training chart(其中我推荐我的包livelossplot)。
从我的Starting deep learning hands-on: image classification on CIFAR-10教程中,我坚持要跟踪两者:
后者可以帮助我们了解哪种模式存在问题,并且在很多场合帮助我改变网络(或补充训练数据,如果是这样的话)。
示例如何工作(此处为Neptune,但您可以在Jupyter Notebook中手动执行,或使用TensorBoard图片频道):
然后查看具体的例子,以及预测的概率:
完整免责声明:我与deepsense.ai,创作者或Neptune - Machine Learning Lab合作。