如何根据IntervalIndex对跳过的日期时间的值求和?

时间:2018-01-24 06:54:45

标签: python pandas datetime dataframe

假设我有两个数据框df1df2

df1

   date                 value
0  2018-01-23 10:00:00  10
1  2018-01-23 10:05:00  20
2  2018-01-23 10:10:00  30
3  2018-01-23 10:15:00  40
4  2018-01-23 10:20:00  50

df2

   date                 value
0  2018-01-23 10:02:00  10
1  2018-01-23 10:03:00  20
2  2018-01-23 10:04:00  30
3  2018-01-23 10:05:00  40
4  2018-01-23 10:16:00  50
5  2018-01-23 10:17:00  60

首先我根据df1.date获得IntervalIndex(左侧关闭,右侧打开),对于每个区间,我需要计算df2.value的总和,并将总和映射到df1

编辑: 我使用的代码:

shift_date = df1.date.shift(-1)
shift_date[-1] = df1.date.iloc[-2] + timedelta(minutes=5) #avoid NaT
idx = pd.IntervalIndex.from_arrays(df1.date, shift_date, closed = "left")
df2_sum = df2.loc[idx.get_indexer(df1.date), 'value']
df2_sum = df2_sum.groupby(df2_sum.index).sum()

但只将df1的值映射到df2.index

我正在寻找的是

   date                 value df2_value
0  2018-01-23 10:00:00  10    60
1  2018-01-23 10:05:00  20    40
2  2018-01-23 10:10:00  30    0
3  2018-01-23 10:15:00  40    0
4  2018-01-23 10:20:00  50    110

2 个答案:

答案 0 :(得分:1)

首先创建IntervalIndex并删除未来某个日期NaT填充2100-01-01

df1.index = pd.IntervalIndex.from_arrays(df1.date,
                                         df1.date.shift(-1).fillna(pd.datetime(2100,1,1)), 
                                         closed = "left")
print (df1)
                                                          date  value
[2018-01-23 10:00:00, 2018-01-23 10:05:00) 2018-01-23 10:00:00     10
[2018-01-23 10:05:00, 2018-01-23 10:10:00) 2018-01-23 10:05:00     20
[2018-01-23 10:10:00, 2018-01-23 10:15:00) 2018-01-23 10:10:00     30
[2018-01-23 10:15:00, 2018-01-23 10:20:00) 2018-01-23 10:15:00     40
[2018-01-23 10:20:00, 2100-01-01)          2018-01-23 10:20:00     50

然后将cut与groupby一起使用并汇总sum

df3 = df2.groupby(pd.cut(df2.date, bins=df1.index))['value'].sum().rename('df2_value')
print (df3)
date
[2018-01-23 10:00:00, 2018-01-23 10:05:00)     60
[2018-01-23 10:05:00, 2018-01-23 10:10:00)     40
[2018-01-23 10:10:00, 2018-01-23 10:15:00)      0
[2018-01-23 10:15:00, 2018-01-23 10:20:00)    110
[2018-01-23 10:20:00, 2100-01-01)               0
Name: df2_value, dtype: int64

两个索引都相同,因此可以删除它和concat

df = pd.concat([df1.reset_index(drop=True), df3.reset_index(drop=True)], axis=1)
print (df)
                 date  value  df2_value
0 2018-01-23 10:00:00     10         60
1 2018-01-23 10:05:00     20         40
2 2018-01-23 10:10:00     30          0
3 2018-01-23 10:15:00     40        110
4 2018-01-23 10:20:00     50          0

答案 1 :(得分:0)

稍微简单一些:

ii = pd.IntervalIndex.from_breaks(df1['date'], closed='left')
res = df2.groupby(ii.get_indexer(df2['date']))['value'].sum()
df1['df2_value'] = res.reindex(df1.index, fill_value=0)

df1的结果输出:

                 date  value  df2_value
0 2018-01-23 10:00:00     10         60
1 2018-01-23 10:05:00     20         40
2 2018-01-23 10:10:00     30          0
3 2018-01-23 10:15:00     40        110
4 2018-01-23 10:20:00     50          0