在特定时间段内根据事件日期创建虚拟变量

时间:2018-01-21 23:50:37

标签: r date posixct

我有一个像这样的数据集products

> head(featured_products)
   Dept Class     Sku                    Description Code Vehicle/Placement  StartDate    EndDate  Comments(Circulation,Location,etc)
1:  430  4318  401684          ++INDV RAMEKIN WP 9CM  OSM          Facebook 2017-01-01 2017-01-29                   Fancy Brunch Blog
2:  430  4318  401684          ++INDV RAMEKIN WP 9CM  OSM           Twitter 2017-01-01 2017-01-29                   Fancy Brunch Blog
3:  340  3411 1672605            ++ SPHERE WILLOW 4"  OP1         Editorial 2016-02-29 2016-03-27                Spruce up for Spring
4:  230  2311 2114074 ++BOX 30 ISLAND ORCHRD TLIGHTS   EM             Email 2016-02-17 2016-02-17 Island Orchard and Jeweled Lanterns
5:  895  8957 2118072            ++PAPASAN STL TAUPE  OSM         Instagram 2017-08-26 2017-10-01                    by @audriestorme
6:  895  8957 2118072            ++PAPASAN STL TAUPE   EM             Email 2017-11-23 2017-11-23               Day 2 Black Friday AM

和另一个数据集sales一样:

      SKU ActivityDate OnlineSalesQuantity OnlineDiscountPercent InStoreSalesQuantity InStoreDiscountPercent
1: 401684   2015-12-01                 150                  0.00                  406                   2.72
2: 401684   2015-12-02                   0                  0.00                  556                   3.79
3: 401684   2015-12-03                   0                  0.00                  723                   3.44
4: 401684   2015-12-04                  16                  4.91                  781                   2.46
5: 401684   2015-12-05                  17                  0.00                  982                   3.18
6: 401684   2015-12-06                   0                  0.00                  851                   3.12

现在......我怎样才能在名为"特色"的sales数据集中创建一个标志列?如果ActivityDate介于products(StartDate,EndDate)中列出的时间和0之间,则此值应为1

我已经尝试过几次建议的帖子来创建POSIXct次的时间间隔,但它们似乎都不适合我的需要。

建议会非常好。谢谢。

2 个答案:

答案 0 :(得分:2)

这可以使用 non-equi join 来解决:

library(data.table)
setDT(sales)[, featured := 0][setDT(featured_products), 
             on = .(SKU, ActivityDate >= StartDate, ActivityDate <= EndDate), 
             featured := 1][]
       SKU ActivityDate featured
1:  401684   2017-01-01        1
2:  401684   2016-03-15        0
3: 1672605   2016-03-22        1
4: 1672605   2017-01-15        0

确保 non-equi join 中涉及的所有列,即ActivityDateStartDateEndDate属于同一类型/如果时间不相关,则为POSIXctDateIDate,最好是Date

最小可重复数据集

featured_products <- data.frame(
  SKU = c(401684, 1672605), 
  StartDate = as.POSIXct(c("2017-01-01", "2016-02-29")), 
  EndDate = as.POSIXct(c("2017-01-29", "2016-03-27")))
sales <- data.frame(
  SKU = c(401684, 401684, 1672605, 1672605), 
  ActivityDate = as.POSIXct(c("2017-01-01", "2016-03-15", "2016-03-22", "2017-01-15")))

请注意,OP要求日期属于POSIXct类。

答案 1 :(得分:0)

基于一个最小的例子:

library(lubridate)
library(plyr)

featured_products <- data.frame(SKU=c(401684,1672605), StartDate=c("2017-01-01",  "2016-02-29"), EndDate=c("2017-01-29",  "2016-03-27"))
sales <- data.frame(SKU=c(401684,401684, 1672605), ActivityDate=c("2017-01-01", "2016-01-01", "2016-03-22"))

output <- plyr::join(sales, featured_products, by="SKU")

output$ActivityDate <- ymd(output$ActivityDate)
output$StartDate <- ymd(output$StartDate)
output$EndDate <- ymd(output$EndDate)

output$featured <- ifelse(output$ActivityDate>=output$StartDate & output$ActivityDate<=output$EndDate,1,0)

它给出了

      SKU ActivityDate  StartDate    EndDate featured
1  401684   2017-01-01 2017-01-01 2017-01-29        1
2  401684   2016-01-01 2017-01-01 2017-01-29        0
3 1672605   2016-03-22 2016-02-29 2016-03-27        1