我正在研究分类技术。我在python中找到了Naive Bayes Classification的在线代码。我已经分享了下面的代码。但是我收到了错误。请帮助解决错误。我使用的软件是带有Python 3.6的Anaconda。 代码如下:
import csv
def loadCsv(filename):
lines = csv.reader(open(filename))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
import random
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
import math
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.iteritems():
summaries[classValue] = summarize(instances)
return summaries
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.iteritems():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.iteritems():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)
return predictions
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet))) * 100.0
def main():
splitRatio = 0.67
filename = 'E:\iris.data.csv'
dataset = loadCsv(filename)
trainingSet, testSet = splitDataset(dataset, splitRatio)
print('Split {0} rows into train = {1} and test = {2} rows'). format(len(dataset), len(trainingSet), len(testSet))
summaries = summarizeByClass(trainingSet)
predictions = getPredictions(summaries, testSet)
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: {0}%').format(accuracy)
main()
我将这作为我的追溯:
runfile(&#39; C:/ Users / Lenovo / Desktop / Naive .py&#39;,wdir =&#39; C:/ Users / Lenovo / Desktop&#39;)
追溯(最近的呼叫最后):
文件&#34;&lt; ipython-input-11-c6b2508abccc&gt;&#34;,第1行,&lt; module&gt; runfile(&#39; C:/ Users / Lenovo / Desktop / Naive .py&#39;,wdir =&#39; C:/ Users / Lenovo / Desktop&#39;)
文件&#34; C:\ Users \ Lenovo \ Anaconda3 \ lib \ site-packages \ spyder \ utils \ site \ sitecustomize.py&#34;,第710行,在runfile中 execfile(filename,namespace)
文件&#34; C:\ Users \ Lenovo \ Anaconda3 \ lib \ site-packages \ spyder \ utils \ site \ sitecustomize.py&#34;,第101行,在execfile中 exec(compile(f.read(),filename,&#39; exec&#39;),命名空间)
文件&#34; C:/ Users / Lenovo / Desktop / Naive .py&#34;,第109行,&lt; module&gt; 主()
文件&#34; C:/ Users / Lenovo / Desktop / Naive .py&#34;,第101行,主要 dataset = loadCsv(filename)
文件&#34; C:/ Users / Lenovo / Desktop / Naive .py&#34;,第7行,在loadCsv中 dataset [i] = [float(x)for x in dataset [i]]
文件&#34; C:/ Users / Lenovo / Desktop / Naive .py&#34;,第7行,&lt; listcomp&gt; dataset [i] = [float(x)for x in dataset [i]]
ValueError:无法将字符串转换为float:&#39; Iris-setosa&#39;
请帮我解决问题。提前谢谢