我试图将现有训练有素的PyTorch模型移植到Keras。
在移植过程中,我陷入了LSTM层。
LSTM网络的Keras实现似乎有三种状态矩阵,而Pytorch实现有四种。
例如,对于具有hidden_layers = 64的双向LSTM,input_size = 512&输出大小= 128个状态参数,如下所示
Keras LSTM的状态参数
[<tf.Variable 'bidirectional_1/forward_lstm_1/kernel:0' shape=(512, 256) dtype=float32_ref>,
<tf.Variable 'bidirectional_1/forward_lstm_1/recurrent_kernel:0' shape=(64, 256) dtype=float32_ref>,
<tf.Variable 'bidirectional_1/forward_lstm_1/bias:0' shape=(256,) dtype=float32_ref>,
<tf.Variable 'bidirectional_1/backward_lstm_1/kernel:0' shape=(512, 256) dtype=float32_ref>,
<tf.Variable 'bidirectional_1/backward_lstm_1/recurrent_kernel:0' shape=(64, 256) dtype=float32_ref>,
<tf.Variable 'bidirectional_1/backward_lstm_1/bias:0' shape=(256,) dtype=float32_ref>]
PyTorch LSTM的状态参数
['rnn.0.rnn.weight_ih_l0', torch.Size([256, 512])],
['rnn.0.rnn.weight_hh_l0', torch.Size([256, 64])],
['rnn.0.rnn.bias_ih_l0', torch.Size([256])],
['rnn.0.rnn.bias_hh_l0', torch.Size([256])],
['rnn.0.rnn.weight_ih_l0_reverse', torch.Size([256, 512])],
['rnn.0.rnn.weight_hh_l0_reverse', torch.Size([256, 64])],
['rnn.0.rnn.bias_ih_l0_reverse', torch.Size([256])],
['rnn.0.rnn.bias_hh_l0_reverse', torch.Size([256])],
我试着查看两个实现的代码,但是不太了解。
有人可以帮我把PyTorch中的4组状态参数转换为Keras中的3组状态参数
答案 0 :(得分:7)
他们真的没那么不同。如果你在PyTorch中总结两个偏置向量,那么方程将与在Keras中实现的方程相同。
这是PyTorch documentation上的LSTM公式:
PyTorch使用两个单独的偏向量进行输入变换(下标以i
开头)和循环变换(下标以h
开头)。
在Keras LSTMCell
:
x_i = K.dot(inputs_i, self.kernel_i)
x_f = K.dot(inputs_f, self.kernel_f)
x_c = K.dot(inputs_c, self.kernel_c)
x_o = K.dot(inputs_o, self.kernel_o)
if self.use_bias:
x_i = K.bias_add(x_i, self.bias_i)
x_f = K.bias_add(x_f, self.bias_f)
x_c = K.bias_add(x_c, self.bias_c)
x_o = K.bias_add(x_o, self.bias_o)
if 0 < self.recurrent_dropout < 1.:
h_tm1_i = h_tm1 * rec_dp_mask[0]
h_tm1_f = h_tm1 * rec_dp_mask[1]
h_tm1_c = h_tm1 * rec_dp_mask[2]
h_tm1_o = h_tm1 * rec_dp_mask[3]
else:
h_tm1_i = h_tm1
h_tm1_f = h_tm1
h_tm1_c = h_tm1
h_tm1_o = h_tm1
i = self.recurrent_activation(x_i + K.dot(h_tm1_i,
self.recurrent_kernel_i))
f = self.recurrent_activation(x_f + K.dot(h_tm1_f,
self.recurrent_kernel_f))
c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1_c,
self.recurrent_kernel_c))
o = self.recurrent_activation(x_o + K.dot(h_tm1_o,
self.recurrent_kernel_o))
输入转换中只添加了一个偏差。但是,如果我们总结PyTorch中的两个偏差,则方程式将是等价的。
双偏LSTM是cuDNN中实现的(参见developer guide)。我对PyTorch并不熟悉,但我想这就是为什么他们使用两个偏置参数。在Keras中,CuDNNLSTM
层也有两个偏置权重向量。