我有一个简单的公式来计算四个不同网格之和的“CL”:
CL = A + B + C + D
我试图使用mc2d
包根据每个输入网格的不确定性来表示CL结果的不确定性。
每个输入网格的不确定性基于均匀分布表示,其不确定性范围为:
光栅A+/- 6
光栅B +/- 10 光栅C +/- 12+/- 5用于栅格D
我想运行蒙特卡罗模拟,根据从这些不确定范围内随机选择的每个网格单元的值,对输入网格进行多次求和(例如n = 1000)
以下代码失败:
Error in .calcTest(x[1:5], fun, na.rm, forcefun, forceapply) :
cannot use this function
我不确定如何解决此错误。任何建议都会非常感激。
library(raster)
library(rgdal)
library(mc2d) #load package
# Input grid files
A <- raster(matrix(c(20, 35, 40, 60), nrow=2))
B <- raster(matrix(c(6, 10, 13, 14), nrow=2))
C <- raster(matrix(c(6, 8, 12, 14), nrow=2))
D <- raster(matrix(c(35, 40, 50, 60), nrow=2))
# combine the RasterLayer objects into a RasterStack
s <- stack(A, B, C, D)
# Uncertainty distance for each raster used to establish the
# min/max for the uniform distributions in the function just below
uA <- 6
uB <- 10
uC <- 12
uD <- 5
# Function for generating CL
ndunc(1000)
fun <- function(x) {
# Convert each raster to mcnode object
dA <- mcdata(x[1], type="0")
dB <- mcdata(x[2], type="0")
dC <- mcdata(x[3], type="0")
dD <- mcdata(x[4], type="0")
# Define uniform distirbutions for each raster
stA <- mcstoc(runif, type="U", min=dA-uA, max=dA+uA, rtrunc=TRUE, linf=0)
stB <- mcstoc(runif, type="U", min=dA-uB, max=dA+uB, rtrunc=TRUE, linf=0)
stC <- mcstoc(runif, type="U", min=dA-uC, max=dA+uC, rtrunc=TRUE, linf=0)
stD <- mcstoc(runif, type="U", min=dA-uD, max=dA+uD, rtrunc=TRUE, linf=0)
# Apply Monte Carlo to this equation
CL <- stA + stB + stC + stD
# Extract the min, mean, and max CL from the 1000 iterations
c(min(CL), mean(CL), max(CL))
}
# Need to create rasters for min(CL), mean(CL), and max(CL)
x <- calc(s, fun)
names(x) = c('min', 'mean', 'max')
plot(x)
答案 0 :(得分:0)
函数中的错误是由rtrunc = TRUE中的拼写错误(缺少等号)引起的