如何制作具有张量流的训练模型的副本?

时间:2018-01-15 14:07:48

标签: python oop tensorflow

我有一个带有模型规范的类和一些训练和评估模型的方法。我想制作一个受过训练的对象的副本,我尝试使用copy.deepcopy()但是没有用。

以下代码只是一个示例,但我希望它适用于任何使用相同构思的模型:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import copy
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None

class Model():

    def __init__(self):
        self.x = tf.placeholder(tf.float32, [None, 784])
        self.W = tf.Variable(tf.zeros([784, 10]))
        self.b = tf.Variable(tf.zeros([10]))
        self.y = tf.matmul(self.x, self.W) + self.b
        self.y_ = tf.placeholder(tf.float32, [None, 10])
        self.cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y_, logits=self.y))
        self.train_step = tf.train.GradientDescentOptimizer(0.5).minimize(self.cross_entropy)

    def train(self, mnist, sess):
        for _ in range(1000):
            batch_xs, batch_ys = mnist.train.next_batch(100)
            sess.run(self.train_step, feed_dict={self.x: batch_xs, self.y_: batch_ys})

    def test(self, mnist, sess):
        self.correct_prediction = tf.equal(tf.argmax(self.y, 1), tf.argmax(self.y_, 1))
        self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
        print(sess.run(self.accuracy, feed_dict={self.x: mnist.test.images, self.y_: mnist.test.labels}))

def main(_):
    # Import data
    mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
    m = Model()
    sess = tf.InteractiveSession()
    tf.global_variables_initializer().run()
    m.train(mnist, sess)
    copy_of_m = copy.deepcopy(m)  # DOES NOT WORK !
    m.test(mnist, sess)
    copy_of_m.test(mnist, sess)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data', help='Directory for storing input data')
    FLAGS, unparsed = parser.parse_known_args()
    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

2 个答案:

答案 0 :(得分:2)

就像在该线程Link中一样,您可以使用from tkinter import * #instancia de calculadora calculadora = Tk() #Nombre de la ventana grafica calculadora.title("Practica calculadora con tkinter") #tamano de la ventana calculadora.geometry("600x750") #color personalizado de la ventana calculadora.configure(bg="black") firtDisplay = Entry(calculadora, state="readonly", width=25).place(x=0, y=5) secondDisplay = Entry(calculadora, state="readonly", width=25).place(x=300, y=5) thirdDisplay = Entry(calculadora, state="readonly", width=25).place(x=149, y=40) #Botones Button(calculadora, text="7", width=15).grid(row=5, column=3) Button(calculadora, text="8", width=15) Button(calculadora, text="9", width=15) calculadora.mainloop() 并执行from copy import copy来代替深度复制。

您还可以使用copy(model)并在复制模型中加载其他模型的权重。

答案 1 :(得分:1)

如注释中的de1所述

TensorFlow变量存在于图形中,不能单独进行序列化/序列化

您不能简单地使用tensorflow复制deepcopy模型,因为Variable位于图内。尽管Variable本身不能被复制(如果复制它们,您将收到此异常TypeError: can't pickle _thread.RLock objects),但您可以使用__getstate__/__setstate__ 复制它们的值。例如,

tf.reset_default_graph()

class Model():

    def __init__(self):
        
        self.normal = 2
        self.x = tf.ones([1,2])
        self.W = tf.Variable(tf.zeros([2, 2]))
        self.b = tf.Variable(tf.zeros([2]))
        self.y = tf.matmul(self.x, self.W) + self.b
        self.train_step = tf.train.GradientDescentOptimizer(0.5).minimize(self.y)
        self.inside_tf = ['W','b','x','y','train_step']
        
    def __getstate__(self):
        
        for item in self.inside_tf:
            setattr(self,'%s_val' % item,sess.run(getattr(self,item))) 
        state = self.__dict__.copy()
        for item in self.inside_tf:
            del state[item]
        return state

    def __setstate__(self, state):
        
        self.__dict__.update(state)

# Import data
m = Model()
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()

copy_of_m = copy.deepcopy(m)

通过运行此脚本可以看到,在__getstate__方法中,在酸洗之前(复制之前),我们首先保存Variable s的值,然后从{ {1}}。因此,在进行酸洗(复制)时,将仅对self.__dict__的值进行酸洗。

通过运行Variable,您可以看到对象[item for item in dir(copy_of_m) if item[:2] != '__']具有属性copy_of_m。尽管['W_val', 'b_val', 'inside_tf', 'normal', 'train_step_val', 'x_val', 'y_val']之类的属性不是W_val tensorflow,但显然Variable的值对我们来说是最重要的。