我有一个带有模型规范的类和一些训练和评估模型的方法。我想制作一个受过训练的对象的副本,我尝试使用copy.deepcopy()
但是没有用。
以下代码只是一个示例,但我希望它适用于任何使用相同构思的模型:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import copy
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
class Model():
def __init__(self):
self.x = tf.placeholder(tf.float32, [None, 784])
self.W = tf.Variable(tf.zeros([784, 10]))
self.b = tf.Variable(tf.zeros([10]))
self.y = tf.matmul(self.x, self.W) + self.b
self.y_ = tf.placeholder(tf.float32, [None, 10])
self.cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y_, logits=self.y))
self.train_step = tf.train.GradientDescentOptimizer(0.5).minimize(self.cross_entropy)
def train(self, mnist, sess):
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(self.train_step, feed_dict={self.x: batch_xs, self.y_: batch_ys})
def test(self, mnist, sess):
self.correct_prediction = tf.equal(tf.argmax(self.y, 1), tf.argmax(self.y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
print(sess.run(self.accuracy, feed_dict={self.x: mnist.test.images, self.y_: mnist.test.labels}))
def main(_):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
m = Model()
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
m.train(mnist, sess)
copy_of_m = copy.deepcopy(m) # DOES NOT WORK !
m.test(mnist, sess)
copy_of_m.test(mnist, sess)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data', help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
答案 0 :(得分:2)
就像在该线程Link中一样,您可以使用from tkinter import *
#instancia de calculadora
calculadora = Tk()
#Nombre de la ventana grafica
calculadora.title("Practica calculadora con tkinter")
#tamano de la ventana
calculadora.geometry("600x750")
#color personalizado de la ventana
calculadora.configure(bg="black")
firtDisplay = Entry(calculadora, state="readonly", width=25).place(x=0, y=5)
secondDisplay = Entry(calculadora, state="readonly", width=25).place(x=300, y=5)
thirdDisplay = Entry(calculadora, state="readonly", width=25).place(x=149, y=40)
#Botones
Button(calculadora, text="7", width=15).grid(row=5, column=3)
Button(calculadora, text="8", width=15)
Button(calculadora, text="9", width=15)
calculadora.mainloop()
并执行from copy import copy
来代替深度复制。
您还可以使用copy(model)
并在复制模型中加载其他模型的权重。
答案 1 :(得分:1)
如注释中的de1所述
TensorFlow变量存在于图形中,不能单独进行序列化/序列化
您不能简单地使用tensorflow
复制deepcopy
模型,因为Variable
位于图内。尽管Variable
本身不能被复制(如果复制它们,您将收到此异常TypeError: can't pickle _thread.RLock objects
),但您可以使用__getstate__/__setstate__
复制它们的值。例如,
tf.reset_default_graph()
class Model():
def __init__(self):
self.normal = 2
self.x = tf.ones([1,2])
self.W = tf.Variable(tf.zeros([2, 2]))
self.b = tf.Variable(tf.zeros([2]))
self.y = tf.matmul(self.x, self.W) + self.b
self.train_step = tf.train.GradientDescentOptimizer(0.5).minimize(self.y)
self.inside_tf = ['W','b','x','y','train_step']
def __getstate__(self):
for item in self.inside_tf:
setattr(self,'%s_val' % item,sess.run(getattr(self,item)))
state = self.__dict__.copy()
for item in self.inside_tf:
del state[item]
return state
def __setstate__(self, state):
self.__dict__.update(state)
# Import data
m = Model()
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
copy_of_m = copy.deepcopy(m)
通过运行此脚本可以看到,在__getstate__
方法中,在酸洗之前(复制之前),我们首先保存Variable
s的值,然后从{ {1}}。因此,在进行酸洗(复制)时,将仅对self.__dict__
的值进行酸洗。
通过运行Variable
,您可以看到对象[item for item in dir(copy_of_m) if item[:2] != '__']
具有属性copy_of_m
。尽管['W_val', 'b_val', 'inside_tf', 'normal', 'train_step_val', 'x_val', 'y_val']
之类的属性不是W_val
tensorflow
,但显然Variable
的值对我们来说是最重要的。