例如,我有1000名客户位于欧洲,经纬度不同。我想找到可以为所有客户提供服务的最少数量的设施,但受限于每个客户必须在24小时交货期间服务(这里我使用从设施到客户的最大允许运输距离作为确保24小时交货的约束服务(距离是两个位置之间的直线,根据欧几里德距离/直线计算)。
因此,每个仓库只能在一定距离内为客户提供服务,例如600公里,什么算法可以帮助我找到服务所有客户所需的最少数量的设施,以及他们各自的纬度和经度。一个例子如下图所示。
找到最小仓库及其位置的示例答案 0 :(得分:2)
使用Gurobi作为求解器的Python代码:
from gurobipy import *
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
customer_num=15
dc_num=10
minxy=0
maxxy=10
M=maxxy**2
max_dist=3
service_level=0.7
covered_customers=math.ceil(customer_num*service_level)
n=0
customer = np.random.uniform(minxy,maxxy,[customer_num,2])
#Model 1 : Minimize number of warehouses
m = Model()
###Variable
dc={}
x={}
y={}
assign={}
for j in range(dc_num):
dc[j] = m.addVar(lb=0,ub=1,vtype=GRB.BINARY, name="DC%d" % j)
x[j]= m.addVar(lb=0, ub=maxxy, vtype=GRB.CONTINUOUS, name="x%d" % j)
y[j] = m.addVar(lb=0, ub=maxxy, vtype=GRB.CONTINUOUS, name="y%d" % j)
for i in range(len(customer)):
for j in range(len(dc)):
assign[(i,j)] = m.addVar(lb=0,ub=1,vtype=GRB.BINARY, name="Cu%d from DC%d" % (i,j))
###Constraint
for i in range(len(customer)):
for j in range(len(dc)):
m.addConstr(((customer[i][0] - x[j])*(customer[i][0] - x[j]) +\
(customer[i][1] - y[j])*(customer[i][1] - \
y[j])) <= max_dist*max_dist + M*(1-assign[(i,j)]))
for i in range(len(customer)):
m.addConstr(quicksum(assign[(i,j)] for j in range(len(dc))) <= 1)
for i in range(len(customer)):
for j in range(len(dc)):
m.addConstr(assign[(i, j)] <= dc[j])
for j in range(dc_num-1):
m.addConstr(dc[j] >= dc[j+1])
m.addConstr(quicksum(assign[(i,j)] for i in range(len(customer)) for j in range(len(dc))) >= covered_customers)
#sum n
for j in dc:
n=n+dc[j]
m.setObjective(n,GRB.MINIMIZE)
m.optimize()
print('\nOptimal Solution is: %g' % m.objVal)
for v in m.getVars():
print('%s %g' % (v.varName, v.x))
# # print(v)
# #Model 2: Optimal location of warehouses
optimal_n=int(m.objVal)
m2 = Model() #create Model 2
# m_new = Model()
###Variable
dc={}
x={}
y={}
assign={}
d={}
for j in range(optimal_n):
x[j]= m2.addVar(lb=0, ub=maxxy, vtype=GRB.CONTINUOUS, name="x%d" % j)
y[j] = m2.addVar(lb=0, ub=maxxy, vtype=GRB.CONTINUOUS, name="y%d" % j)
for i in range(len(customer)):
for j in range(optimal_n):
assign[(i,j)] = m2.addVar(lb=0,ub=1,vtype=GRB.BINARY, name="Cu%d from DC%d" % (i,j))
for i in range(len(customer)):
for j in range(optimal_n):
d[(i,j)] = m2.addVar(lb=0,ub=max_dist*max_dist,vtype=GRB.CONTINUOUS, name="d%d,%d" % (i,j))
###Constraint
for i in range(len(customer)):
for j in range(optimal_n):
m2.addConstr(((customer[i][0] - x[j])*(customer[i][0] - x[j]) +\
(customer[i][1] - y[j])*(customer[i][1] - \
y[j])) - M*(1-assign[(i,j)]) <= d[(i,j)])
m2.addConstr(d[(i,j)] <= max_dist*max_dist)
for i in range(len(customer)):
m2.addConstr(quicksum(assign[(i,j)] for j in range(optimal_n)) <= 1)
m2.addConstr(quicksum(assign[(i,j)] for i in range(len(customer)) for j in range(optimal_n)) >= covered_customers)
L=0
L = quicksum(d[(i,j)] for i in range(len(customer)) for j in range(optimal_n))
m2.setObjective(L,GRB.MINIMIZE)
m2.optimize()
#########Print Optimization Result
print('\nOptimal Solution is: %g' % m2.objVal)
dc_x=[]
dc_y=[]
i_list=[]
j_list=[]
g_list=[]
d_list=[]
omit_i_list=[]
for v in m2.getVars():
print('%s %g' % (v.varName, v.x))
if v.varName.startswith("x"):
dc_x.append(v.x)
if v.varName.startswith("y"):
dc_y.append(v.x)
if v.varName.startswith("Cu") and v.x == 1:
print([int(s) for s in re.findall("\d+", v.varName)])
temp=[int(s) for s in re.findall("\d+", v.varName)]
i_list.append(temp[0])
j_list.append(temp[1])
g_list.append(temp[1]+len(customer)) #new id mapping to j_list
if v.varName.startswith("Cu") and v.x == 0:
temp=[int(s) for s in re.findall("\d+", v.varName)]
omit_i_list.append(temp[0])
if v.varName.startswith("d") and v.x > 0.00001:
d_list.append(v.x)
#########Draw Netword
# prepare data
dc_cor=list(zip(dc_x,dc_y))
dc_list=[]
for i,k in enumerate(dc_cor):
temp=len(customer)+i
dc_list.append(temp)
df=pd.DataFrame({'Customer':i_list,'DC':j_list,'DC_drawID':g_list,'Sqr_distance':d_list})
df['Sqrt_distance']=np.sqrt(df['Sqr_distance'])
print(df)
dc_customer=[]
for i in dc_list:
dc_customer.append(df[df['DC_drawID'] == i]['Customer'].tolist())
print('\n', dc_customer)
#draw
G = nx.DiGraph()
d_node=[]
e = []
node = []
o_node = []
for c, k in enumerate(dc_list):
G.add_node(k, pos=(dc_cor[c][0], dc_cor[c][1]))
d_node.append(c)
v = dc_customer[c]
for n, i in enumerate(v):
G.add_node(i, pos=(customer[i][0], customer[i][1]))
u = (k, v[n])
e.append(u)
node.append(i)
G.add_edge(k, v[n])
for m,x in enumerate(omit_i_list):
G.add_node(x, pos=(customer[x][0], customer[x][1]))
o_node.append(x)
nx.draw_networkx_nodes(G, dc_cor, nodelist=d_node, with_labels=True, width=2, style='dashed', font_color='w', font_size=10, font_family='sans-serif', node_shape='^',
node_size=400)
nx.draw_networkx_nodes(G, customer, nodelist=o_node, with_labels=True, width=2, style='dashed', font_color='w', font_size=10, font_family='sans-serif', node_color='purple',
node_size=400)
nx.draw(G, nx.get_node_attributes(G, 'pos'), nodelist=node, edgelist=e, with_labels=True,
width=2, style='dashed', font_color='w', font_size=10, font_family='sans-serif', node_color='purple')
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('Optimization_Result.xlsx', engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name='Sheet1')
writer.save()
plt.axis('on')
plt.show()
答案 1 :(得分:1)
这属于设施位置问题的类别。有关这些问题的文献非常丰富。 p-center 问题接近你想要的。
一些注意事项:
拥有1000个随机客户位置,我可以找到经过验证的最佳解决方案:
---- 57 VARIABLE n.L = 4.000 number of open facilties
---- 57 VARIABLE isopen.L use facility
facility1 1.000, facility2 1.000, facility3 1.000, facility4 1.000
---- 60 PARAMETER locations
x y
facility1 26.707 31.796
facility2 68.739 68.980
facility3 28.044 67.880
facility4 76.921 34.929
有关详细信息,请参阅here。
基本上我们解决了两个模型: