我的表格如下:
id time_stamp Access Type
1001 2017-09-05 09:35:00 IN
1002 2017-09-05 11:00:00 IN
1001 2017-09-05 12:00:00 OUT
1002 2017-09-05 12:25:00 OUT
1001 2017-09-05 13:00:00 IN
1002 2017-09-05 14:00:00 IN
1001 2017-09-05 17:00:00 OUT
1002 2017-09-05 18:00:00 OUT
我在下面尝试了这个查询:
SELECT ROW_NUMBER() OVER (
ORDER BY A.emp_reader_id ASC
) AS SNo
,B.emp_code
,B.emp_name
,CASE
WHEN F.event_entry_name = 'IN'
THEN A.DT
END AS in_time
,CASE
WHEN F.event_entry_name = 'OUT'
THEN A.DT
END AS out_time
,cast(left(CONVERT(TIME, a.DT), 5) AS VARCHAR) AS 'time'
,isnull(B.areaname, 'OAE6080036073000006') AS areaname
,C.dept_name
,b.emp_reader_id
,isnull(c.dept_name, '') AS group_name
,CONVERT(CHAR(11), '2017/12/30', 103) AS StartDate
,CONVERT(CHAR(11), '2018/01/11', 103) AS ToDate
,0 AS emp_card_no
FROM dbo.trnevents AS A
LEFT OUTER JOIN dbo.employee AS B ON A.emp_reader_id = B.emp_reader_id
LEFT OUTER JOIN dbo.departments AS C ON B.dept_id = C.dept_id
LEFT OUTER JOIN dbo.DevicePersonnelarea AS E ON A.POINTID = E.areaid
LEFT OUTER JOIN dbo.Event_entry AS F ON A.EVENTID = F.event_entry_id
ORDER BY A.emp_reader_id ASC
它有效,但需要如下所示。有时在事件和事件中有相同的内容:
SNo emp_code emp_name in_time out_time time areaname dept_name emp_reader_id group_name StartDate ToDate emp_card_no
1 102 Ihsan Titi NULL 2017-12-30 12:16:26.000 12:16 Dubai Sales 102 Sales 2017/12/30 2018/01/11 0
2 102 Ihsan Titi NULL 2017-12-30 12:16:27.000 12:16 Dubai Sales 102 Sales 2017/12/30 2018/01/11 0
3 102 Ihsan Titi 2017-12-30 12:44:26.000 NULL 12:44 Dubai Sales 102 Sales 2017/12/30 2018/01/11 0
4 102 Ihsan Titi 2017-12-30 16:27:48.000 NULL 16:27 Dubai Sales 102 Sales 2017/12/30 2018/01/11 0
预期输出:
SNo emp_code emp_name in_time out_time time areaname dept_name emp_reader_id group_name StartDate ToDate emp_card_no
1 102 Ihsan Titi 2017-12-30 12:16:26.000 2017-12-30 12:44:26.000 12:16 Dubai Sales 102 Sales 2017/12/30 2018/01/11 0
2 102 Ihsan Titi 2017-12-30 12:50:26.000 2017-12-30 16:27:48.000 12:16 Dubai Sales 102 Sales 2017/12/30 2018/01/11 0
请帮助我坚持到这里来这样......
答案 0 :(得分:1)
你可以用这个:
select A_In.emp_reader_id as empId,A_In.Belongs_to,A_In.DeviceSerialNumber,
DT as EntryTime,
(
select min(DT) as OutTime
from trnevents A_Out
where EVENTID like 'IN'
and A_Out.emp_reader_id = A_In.emp_reader_id
and A_Out.DT > A_In.DT and DATEDIFF(day,A_In.Dt,A_Out.DT)=0
) as ExitTime from trnevents A_In where EVENTID like 'OUT'
from trnevents A_In
答案 1 :(得分:0)
我在下面找到它的方式是说,如果一个事件与之前的事件类型相同,那么将其视为一个"流氓"。
盗贼总是独自坐着,永远不会与任何其他事件配对。
所有其他事件都已配对,IN
是第一项,OUT
是第二项。
然后我可以将所有内容分组以将对减少到单行。
WITH
rogue_check
AS
(
SELECT
CASE WHEN LAG(F.event_entry_name) OVER (PARTITION BY A.emp_reader_number ORDER BY A.DT) = F.event_entry_name THEN 1 ELSE 0 END AS is_rogue,
*
FROM
trnevents AS A
LEFT JOIN
EVent_entry AS F
ON F.event_entry_id = A.event_id
),
sorted AS
(
SELECT
ROW_NUMBER() OVER ( ORDER BY DT) AS event_sequence_id,
ROW_NUMBER() OVER (PARTITION BY emp_reader_number, is_rogue ORDER BY DT) AS employee_checked_event_sequence_id,
*
FROM
rogue_check
)
SELECT
MIN(event_sequence_id) AS unique_id,
emp_reader_number,
MAX(CASE WHEN event_entry_name = 'IN' THEN DT END) AS time_in,
MAX(CASE WHEN event_entry_name = 'OUT' THEN DT END) AS time_out
FROM
sorted
GROUP BY
emp_reader_number,
is_rogue,
employee_checked_event_sequence_id - CASE WHEN is_rogue = 1 OR event_entry_name = 'IN' THEN 0 ELSE 1 END
ORDER BY
emp_reader_number,
unique_id
;
示例架构:
CREATE TABLE trnevents (
emp_reader_number INT,
DT DATETIME,
event_id INT
);
CREATE TABLE Event_entry (
event_entry_id INT,
event_entry_name NVARCHAR(32)
);
示例数据:
INSERT INTO Event_entry VALUES (0, N'IN'), (1, N'OUT');
INSERT INTO trnevents VALUES
(1, '2017-01-01 08:00', 0),
(1, '2017-01-01 08:01', 0),
(1, '2017-01-01 12:00', 1),
(1, '2017-01-01 13:00', 0),
(1, '2017-01-01 17:00', 1),
(1, '2017-01-01 17:01', 1)
;
示例结果:
unique_id emp_reader_number time_in time_out
1 1 01/01/2017 08:00:00 01/01/2017 12:00:00
2 1 01/01/2017 08:01:00 null
4 1 01/01/2017 13:00:00 01/01/2017 17:00:00
6 1 null 01/01/2017 17:01:00
GROUP BY
比我在火车上预期的更加繁琐,因此可能会导致大型数据集的执行计划中出现SORT
。我很快就会想到另一种选择。
这是一个带有一些简单虚拟数据的演示,证明它至少适用于那些情况。 (如果他们发现任何问题,请随意更新其他案例)
http://dbfiddle.uk/?rdbms=sqlserver_2017&fiddle=d06680d8ed374666760cdc67182aaacb
答案 2 :(得分:-2)
您可以使用PIVOT
select id, [in], out
from
( select
id, time_stamp, accessType,
(ROW_NUMBER() over (partition by id order by time_stamp) -1 )/ 2 rn
from yourtable ) src
pivot
(min(time_stamp) for accessType in ([in],[out])) p
这假设每个" in"之后是" out"并使用row_number对这些时间组进行分组。