重新索引MultiIndex数据帧的特定级别

时间:2018-01-10 02:08:10

标签: python pandas dataframe multi-index reindex

我有一个带有两个索引的DataFrame,并希望通过其中一个索引对其进行重新索引。

from pandas_datareader import data
import matplotlib.pyplot as plt
import pandas as pd

# Instruments to download
tickers = ['AAPL']

# Online source one should use
data_source = 'yahoo'

# Data range
start_date = '2000-01-01'
end_date = '2018-01-09'

# Load the desired data
panel_data = data.DataReader(tickers, data_source, start_date, end_date).to_frame()
panel_data.head()

Screenshot

重建索引如下:

# Get just the adjusted closing prices
adj_close = panel_data['Adj Close']

# Gett all weekdays between start and end dates
all_weekdays = pd.date_range(start=start_date, end=end_date, freq='B')

# Align the existing prices in adj_close with our new set of dates
adj_close = adj_close.reindex(all_weekdays, method="ffill")

最后一行给出以下错误:

TypeError: '<' not supported between instances of 'tuple' and 'int'

这是因为DataFrame索引是元组列表:

panel_data.index[0]
(Timestamp('2018-01-09 00:00:00'), 'AAPL')

是否可以重新索引adj_close?顺便说一下,如果我不使用to_frame()将Panel对象转换为DataFrame,则重建索引按原样工作。但似乎不推荐使用Panel对象......

1 个答案:

答案 0 :(得分:3)

如果您要在某个级别重新编制索引,那么reindex会接受您可以传递的level参数 -

adj_close.reindex(all_weekdays, level=0)

传递level参数时,您无法同时传递method参数(reindex抛出TypeError),因此您可以链接{{1}调用之后 -

ffill