有没有办法使用seaborn
' sns.boxplot()
迭代绘制数据而不会使箱图重叠? (不将数据集合并为单个pd.DataFrame()
)
背景
有时,在比较不同的(例如大小/形状)数据集时,相互比较通常很有用,可以通过不同的共享变量(通过pd.cut()
和df.groupby()
对数据集进行分类,如图所示下面)。
以前,我已经迭代地绘制了这些" binned"通过使用matplotlib
ax.boxplot()
(通过提供y轴位置值作为position
参数来循环单独的数据框,将数据作为同一轴上的箱线图,以确保箱图不会出现。重叠)。
示例
以下是一个简化示例,显示了使用sns.boxplot()
时的重叠图:
import seaborn as sns
import random
import pandas as pd
import matplotlib.pyplot as plt
# Get the tips dataset and select a subset as an example
tips = sns.load_dataset("tips")
variable_to_bin_by = 'tip'
binned_variable = 'total_bill'
df = tips[[binned_variable, variable_to_bin_by] ]
# Create a second dataframe with different values and shape
df2 = pd.concat( [ df.copy() ] *5 )
# Use psuedo random numbers to convey that df2 is different to df
scale = [ random.uniform(0,2) for i in range(len(df2[binned_variable])) ]
df2[ binned_variable ] = df2[binned_variable].values * scale * 5
dfs = [ df, df2 ]
# Group the data by a list of bins
bins = [0, 1, 2, 3, 4]
for n, df in enumerate( dfs ):
gdf = df.groupby( pd.cut(df[variable_to_bin_by].values, bins ) )
data = [ i[1][binned_variable].values for i in gdf]
dfs[n] = pd.DataFrame( data, index = bins[:-1])
# Create an axis for both DataFrames to be plotted on
fig, ax = plt.subplots()
# Loop the DataFrames and plot
colors = ['red', 'black']
for n in range(2):
ax = sns.boxplot( data=dfs[n].T, ax=ax, width=0.2, orient='h',
color=colors[n] )
plt.ylabel( variable_to_bin_by )
plt.xlabel( binned_variable )
plt.show()
更多细节
我意识到上面的简化示例可以通过组合DataFrame并向hue
提供sns.boxplot()
参数来解决。
更新DataFrames的索引也没有帮助,因为随后使用了来自最后一个DataFrame的y值。
提供kwargs
参数(例如kwargs={'positions': dfs[n].T.index}
)不会起作用,因为这会引发TypeError
。
TypeError:boxplot()获得了关键字参数的多个值 '位置'
设置sns.boxplot()
dodge
的{{1}}参数无法解决此问题。
答案 0 :(得分:1)
有趣的是," hack"我建议的earlier today in this answer可以在这里应用。
它使代码复杂化,因为seaborn期望使用长格式数据帧而不是宽格式来使用色调嵌套。
# Get the tips dataset and select a subset as an example
tips = sns.load_dataset("tips")
df = tips[['total_bill', 'tip'] ]
# Group the data by
bins = [0, 1, 2, 3, 4]
gdf = df.groupby( pd.cut(df['tip'].values, bins ) )
data = [ i[1]['total_bill'].values for i in gdf]
df = pd.DataFrame( data , index = bins[:-1]).T
dfm = df.melt() # create a long-form database
dfm.loc[:,'dummy'] = 'dummy'
# Create a second, slightly different, DataFrame
dfm2 = dfm.copy()
dfm2.value = dfm.value*2
dfs = [ dfm, dfm2 ]
colors = ['red', 'black']
hue_orders = [['dummy','other'], ['other','dummy']]
# Create an axis for both DataFrames to be plotted on
fig, ax = plt.subplots()
# Loop the DataFrames and plot
for n in range(2):
ax = sns.boxplot( data=dfs[n], x='value', y='variable', hue='dummy', hue_order=hue_orders[n], ax=ax, width=0.2, orient='h',
color=colors[n] )
ax.legend_.remove()
plt.show()