我有一张32x32x3格式的10,000幅图片。所以Tensor是D4(形状(10000,32,32,3)。
Tensor("...", shape=(10000, 32, 32, 3), dtype=float32)
现在我想将tf.image.per_image_standardization
操作应用于单个图像:
tf. image. per_image_standardization (...)
在这种情况下,最佳做法是什么?也许用10000个张量的张量切片形状(32,32,3)?
答案 0 :(得分:1)
您可以使用import tensorflow as tf
a = tf.get_variable("a", (10000,32,32,3))
a = tf.map_fn(lambda x: tf.image.per_image_standardization(x), a, parallel_iterations=10000)
print(a.shape)
将指定函数应用于张量的每个元素(从第一维展开它):
ex---------
[ { user: 'VAY9090', value: [ 'KL65' ] },
{ user: 'VAY9090', value: [ 'KL6I' ] },
{ user: 'VAY9092', value: [ 'KLMF' ] },
{ user: 'VAY9092', value: [ 'KLMQ' ] },
{ user: 'VAY9090', value: [ 'KLMR' ] },
{ user: 'BTD9891', value: [ 'KLMS' ] },
{ user: 'VAY9090', value: [ 'KLVZ' ] },
{ user: 'VAY9033', value: [ 'KMYJ' ] },
{ user: 'BTD9891', value: [ 'KMYK' ] } ]
convert to
[
{ user: 'VAY9090', value: [ 'KL65','KL6I','KLMR','KLVZ' ] },
{ user: 'VAY9092', value: [ 'KLMQ','KLMQ' ]},
{ user: 'BTD9891', value: [ 'KLMS','KMYK'] },
{ user: 'VAY9033', value: [ 'KMYJ' ] }
]