我正在尝试使用R的Caret包为特征选择问题编写遗传算法。 我测试了下面的代码(使用随机森林作为健身功能)。有用。 我可以更改什么才能使其与其他模型(SVM或LDA)一起使用?
library(dplyr)
library(doParallel)
library(randomForest)
ga_ctrl <- gafsControl(functions = rfGA, # Assess fitness with RF
method = "cv", # 10 fold cross validation
genParallel=TRUE, # Use parallel programming
allowParallel = TRUE
)
lev <- c("0", "1") # Set the levels
set.seed(27)
system.time( model_1 <- gafs(x = hill_train, y = hill_train$class,
iters = 100, # generations of algorithm
popSize = 50, # population size for each generation
pcrossover = 0.8,
pmutation = 0.001,
levels = lev,
gafsControl = ga_ctrl))
plot(model_1) # Plot mean fitness (AUC) by generation
mm_hill <- model_1$ga$final