我正在尝试在此网站上运行简单程序https://stanfordnlp.github.io/CoreNLP/api.html
我的计划
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;
import java.util.Properties;
import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.util.CoreMap;
public class StanfordClass {
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
String text = "What is the Weather in Mumbai right now?";
Annotation document = new Annotation(text);
pipeline.annotate(document);
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
for(CoreMap sentence: sentences) {
// traversing the words in the current sentence
// a CoreLabel is a CoreMap with additional token-specific methods
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// this is the text of the token
String word = token.get(TextAnnotation.class);
// this is the POS tag of the token
String pos = token.get(PartOfSpeechAnnotation.class);
// this is the NER label of the token
String ne = token.get(NamedEntityTagAnnotation.class);
System.out.println(String.format("Print: word: [%s] pos: [%s] ne: [%s]",word, pos, ne));
}
}
}
}
但在线程“main”获取异常java.lang.OutOfMemoryError:Java堆空间
我尝试了什么
1.如果我从上面的代码中删除了ner(命名实体识别器)属性,即 props.setProperty(“annotators”,“tokenize,ssplit,pos,lemma,parse”);
然后代码运行正常
2.但是我需要ner(命名实体识别器)因此我在eclipse.ini文件中增加堆大小达1g并且确保这个大小足够用于该程序并且还确保在这种情况下堆大小不是问题。我认为缺少了一些东西,但没有得到。
答案 0 :(得分:1)
经过大量搜索后得到答案 Using Stanford CoreNLP
使用以下答案: -
1.Windows - &gt;首
2.Java - &gt;已安装的JREs
3.选择JRE并单击编辑
4.在默认VM参数字段中,键入“-Xmx1024M”。 (或者你的记忆偏好,1GB的ram是1024)
5.点击完成或确定。