这是Coq equality implementation的后续行动(尽管这个问题是独立的)。
我有一个简单的归纳类型的树(t
),带有一组固定的标签(arityCode
),每个标签都有固定数量的子项。我有一个类型(path
)到树的路径。我正在尝试实施一些操作。特别是,我希望能够在几个方向上移动光标。这看起来很简单,但我遇到了障碍。
这是代码中的全部内容,但快速解释我遇到的问题:要构建there
路径,我需要生成path (Vector.nth v i)
(其中一个子路径) 。但唯一的path
构造函数(here
和there
)会生成path (Node c v)
。因此,在某种意义上,我需要向编译器显示路径同时具有类型path (Node c v)
和path (Vector.nth v i)
,但Coq不够聪明,无法计算(Vector.nth children fin_n)
- > Node c v
。我怎么能说服这个没问题?
Require Coq.Bool.Bool. Open Scope bool.
Require Coq.Strings.String. Open Scope string_scope.
Require Coq.Arith.EqNat.
Require Coq.Arith.PeanoNat. Open Scope nat_scope.
Require Coq.Arith.Peano_dec.
Require Coq.Lists.List. Open Scope list_scope.
Require Coq.Vectors.Vector. Open Scope vector_scope.
Require Fin.
Module Export LocalVectorNotations.
Notation " [ ] " := (Vector.nil _) (format "[ ]") : vector_scope.
Notation " [ x ; .. ; y ] " := (Vector.cons _ x _ .. (Vector.cons _ y _ (Vector.nil _)) ..) : vector_scope.
Notation " [ x ; y ; .. ; z ] " := (Vector.cons _ x _ (Vector.cons _ y _ .. (Vector.cons _ z _ (Vector.nil _)) ..)) : vector_scope.
End LocalVectorNotations.
Module Core.
Module Typ.
Set Implicit Arguments.
Inductive arityCode : nat -> Type :=
| Num : arityCode 0
| Hole : arityCode 0
| Arrow : arityCode 2
| Sum : arityCode 2
.
Definition codeEq (n1 n2 : nat) (l: arityCode n1) (r: arityCode n2) : bool :=
match l, r with
| Num, Num => true
| Hole, Hole => true
| Arrow, Arrow => true
| Sum, Sum => true
| _, _ => false
end.
Inductive t : Type :=
| Node : forall n, arityCode n -> Vector.t t n -> t.
Inductive path : t -> Type :=
| Here : forall n (c : arityCode n) (v : Vector.t t n), path (Node c v)
| There : forall n (c : arityCode n) (v : Vector.t t n) (i : Fin.t n),
path (Vector.nth v i) -> path (Node c v).
Example node1 := Node Num [].
Example children : Vector.t t 2 := [node1; Node Hole []].
Example node2 := Node Arrow children.
(* This example can also be typed simply as `path node`, but we type it this way
to use it as a subath in the next example.
*)
Example here : path (*node1*) (Vector.nth children Fin.F1) := Here _ _.
Example there : path node2 := There _ children Fin.F1 here.
Inductive direction : Type :=
| Child : nat -> direction
| PrevSibling : direction
| NextSibling : direction
| Parent : direction.
Fixpoint move_in_path
(node : t)
(dir : direction)
(the_path : path node)
: option (path node) :=
match node with
| @Node num_children code children =>
match the_path with
| There _ _ i sub_path => move_in_path (Vector.nth children i) dir sub_path
| Here _ _ =>
match dir with
| Child n =>
match Fin.of_nat n num_children with
| inleft fin_n =>
(* The problem:
The term "Here ?a@{n0:=n; n:=n0} ?t@{n0:=n; n:=n0}" has type
"path (Node ?a@{n0:=n; n:=n0} ?t@{n0:=n; n:=n0})" while it is expected to have type
"path (Vector.nth children fin_n)".
How can I convince Coq that `Vector.nth children fin_n`
has type `path (Node a t)`?
*)
let here : path (Vector.nth children fin_n) := Here _ _ in
let there : path node := There _ children fin_n here in
Some there
| inright _ => None
end
| _ => None (* TODO handle other directions *)
end
end
end.
End Typ.
End Core.
答案 0 :(得分:2)
您可以为Here
定义一个智能构造函数,它对应用它的t
值的形状没有任何限制:
Definition Here' (v : t) : path v := match v return path v with
| Node c vs => Here c vs
end.
然后你可以写:
let here : path (Vector.nth children fin_n) := Here' _ in