IF声明Panda Dataframe:系列的真值是模棱两可的

时间:2017-12-21 21:48:03

标签: python pandas dataframe ambiguous

我有一个只包含浮动数据的数据框。我基本上想要创建一个新列,如果满足条件,则从另一列获取值,如果不满足则从另一列获取值。 我的所有列都是浮点型。

for col in list_scenarios:
    df_merged['in_scenario_'+ col] = 1.0
    print(df_merged['in_scenario_' + col])
    if df_merged[col].shift(1)== 1.0:
        df_merged['in_scenario_' + col] = df_merged['in_scenario_'+ col].shift(1)*df_merged[asset +'_r']
    else:
        df_merged['in_scenario_' + col] = df_merged['in_scenario_'+ col].shift(1)
    print(df_merged['in_scenario_' + col])

我收到以下错误:

    Traceback (most recent call last):
  File "C:\Program Files\JetBrains\PyCharm 2017.3.1\helpers\pydev\pydev_run_in_console.py", line 52, in run_file
    pydev_imports.execfile(file, globals, locals)  # execute the script
  File "C:\Program Files\JetBrains\PyCharm 2017.3.1\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
    exec(compile(contents+"\n", file, 'exec'), glob, loc)
  File "C:/Users/Main/PycharmProjects/Macrobond_API/scenario testing.py", line 268, in <module>
    if df_merged[col].shift(1)== 1.0:
  File "C:\Users\Main\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\generic.py", line 1121, in __nonzero__
    .format(self.__class__.__name__))
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

我无法弄清楚什么是含糊不清的。

由于

My dataframe looks like this (month year are indices)
            sp500_500  USA  MEXICO  sp500_500_r
month year                                                           
6     2017   2423.41  1.0      1.0     0.004814
7     2017   2470.30  1.0      1.0     0.019349
8     2017   2471.65  1.0      1.0     0.000546

2 个答案:

答案 0 :(得分:1)

df_merged[col].shift(1)== 1.0你比较两种不同的类型 df_merged[col].shift(1)返回一个数据框。如果要获得该列的第一个值,可以使用iloc。 df_merged[col].iloc[0] == 1.0

a
   x  
0   0   
1   1   
2   2   
3   3   
4   4   

a.x.shift(1)

   x  
0   NaN   
1   1   
2   2   
3   3   
4   4  

a.x.iloc[0]

1

答案 1 :(得分:0)

我实际上找到了解决方法。

for col in list_scenarios:
    df_merged['in_scenario_'+ col] = df_merged[asset +'_r']
    df_merged[col] = df_merged[col].shift(1)
    df_merged.loc[df_merged[col] ==0, 'in_scenario_'+ col] = 0

这给了我回报&#39;我想了。然后我只需要从这个返回值构建索引,从1开始作为第一个值。

感谢您的帮助。