我有一个示例数据集:
import pandas as pd
d = {
'H#': ['12843','12843','12843','12843','20000','20000','20000','20000','20000'],
'measure':[1,1,1,3,3,3,3,2,2],
'D':[1,0,2,1,1,1,2,1,1],
'N':[2,3,1,4,5,0,0,0,2]
}
df = pd.DataFrame(d)
df = df.reindex_axis(['H#','measure', 'D','N'], axis=1)
看起来像:
H# measure D N
0 12843 1 1 2
1 12843 1 0 3
2 12843 1 2 1
3 12843 3 1 4
4 20000 3 1 5
5 20000 3 1 0
6 20000 3 2 0
7 20000 2 1 0
8 20000 2 1 2
我想将groupby应用于 not measure = 3 的行'H#'和'measure'来汇总'D'和'N'。 期望的输出:
H# measure D N
0 12843 1 3 6
3 12843 3 1 4
4 20000 3 1 5
5 20000 3 1 0
6 20000 3 2 0
7 20000 2 2 2
我的尝试:
mask=df["measure"]!=3 #first to mask the rows for the groupby
#the following line has the wrong syntax, how can i apply groupby to the masked dataset?
df.loc[mask,]= df.loc[mask,].groupby(['H#','measure'],as_index=False)['D','N'].sum()
最后一行代码的语法错误,如何将groupby应用于屏蔽数据集?
答案 0 :(得分:3)
IIUC:
align-content: flex-start
答案 1 :(得分:2)
你可以使用分解你的df和group然后连接回来:
pd.concat([df.query('measure == 3'),
df.query('measure != 3')
.groupby(['H#','measure'],as_index=False)['D','N']
.agg('sum')])
输出:
H# measure D N
3 12843 3 1 4
4 20000 3 1 5
5 20000 3 1 0
6 20000 3 2 0
0 12843 1 3 6
1 20000 2 2 2