I am running a MOB tree on a dataset and I want to modify plots in terminal nodes. I am going to use bar chart of the coefficients of the models which fitted by MOB in each node as my terminal node.
For example, I run the MOB tree on "PimaIndiansDiabetes" dataset in "mlbench" package. Here is the codes:
pid_formula <- diabetes ~ glucose | pregnant + pressure + triceps +
insulin + mass + pedigree + age
logit <- function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
glm(y ~ 0 + x, family = binomial, start = start, ...)
}
pid_tree <- mob(pid_formula, data = PimaIndiansDiabetes, fit = logit)
then I have model for each node. for example I have "mass=-9.95+0.058*glucose" for Node number 2. I want to make bar charts from these coefficients (ex: -9.95 and 0.058 for node number 2) and use these bar charts as my terminal nodes in final tree plot. Any idea how to do that? Thanks in advance.
答案 0 :(得分:1)
要在partykit
中实现这样的图形,您必须为plot()
方法(或者更确切地说是面板生成函数)编写新的面板函数。起点可以是partykit::node_barplot
,它首先提取分类树的拟合概率,然后使用grid
包绘制它们。相反,您可以使用coef()
提取估算的参数,然后使用grid
绘制这些参数。这有点技术但不是非常复杂。
但是,我不建议实现这样的功能。原因是这最适合比较同一节点内的不同系数。但由于坡度和截距是完全不同的尺度,因此不容易解释。相反,应该更多地强调跨节点的相同系数的差异。其基础也是:
coef(pid_tree)
## x(Intercept) xglucose
## 2 -9.951510 0.05870786
## 4 -6.705586 0.04683748
## 5 -2.770954 0.02353582
此外,可以考虑置信区间的相应标准误差。 (请记住,这些必须采取一些盐,但:他们不会调整估计树,但假装终端组外生。仍然有用作粗糙的尺度。)我包括一个小的便利功能这样做:
confintplot <- function(object, ylim = NULL,
xlab = "Parameter per node", ylab = "Estimate",
main = "", index = NULL, ...)
{
## point estimates and interval
cf <- coef(object)
node <- nodeids(object, terminal = TRUE)
ci <- nodeapply(object, ids = node, FUN = function(n)
confint(info_node(n)$object, ...))
if (!is.null(index)) {
cf <- cf[, index, drop = FALSE]
ci <- lapply(ci, "[", index, , drop = FALSE)
}
cfnm <- rownames(ci[[1L]])
nodenm <- rownames(cf)
## set up dimensions
n <- length(ci)
k <- nrow(ci[[1L]])
at <- t(outer(1:k, seq(-0.15, 0.15, length.out = n), "+"))
## empty plot
if(is.null(ylim)) ylim <- range(unlist(ci))
plot(0, 0, type = "n", xlim = range(at), ylim = ylim,
xlab = xlab, ylab = ylab, main = main, axes = FALSE)
## draw every parameter
for(i in 1L:k) {
arrows(at[,i], sapply(ci, "[", i, 1L), at[,i], sapply(ci, "[", i, 2L),
code = 3, angle = 90, length = 0.05)
points(at[, i], cf[, cfnm[i]], pch = 19, col = "white", cex=1.15)
points(at[, i], cf[, cfnm[i]], pch = nodenm, cex = 0.65)
}
axis(1, at = 1:k, labels = cfnm)
axis(2)
box()
}
使用这个我们可以分别为每个参数(截距与斜率)创建一个图。这表明当斜率下降时,截距在节点间增加。
par(mfrow = c(1, 2))
confintplot(pid_tree, index = 1)
confintplot(pid_tree, index = 2)
也可以在共同的y轴上显示这些。然而,由于尺度不同,这完全掩盖了斜率的变化:
confintplot(pid_tree)
最终评论:我建议glmtree()
使用mob()
代替这种特殊模型,而不是{{1}}“手工”。前者更快,并提供一些额外的功能,尤其是简单的预测。