我试图找到潜在因子素数的除数(形式n!+ - 1的数量),因为我最近买了Skylake-X工作站,我认为我可以使用AVX512指令加快速度。
算法简单,主要步骤是对同一个除数重复取模。主要是循环大范围的n值。这是用c写的天真的方法(P是素数表):
uint64_t factorial_naive(uint64_t const nmin, uint64_t const nmax, const uint64_t *restrict P)
{
uint64_t n, i, residue;
for (i = 0; i < APP_BUFLEN; i++){
residue = 2;
for (n=3; n <= nmax; n++){
residue *= n;
residue %= P[i];
// Lets check if we found factor
if (nmin <= n){
if( residue == 1){
report_factor(n, -1, P[i]);
}
if(residue == P[i]- 1){
report_factor(n, 1, P[i]);
}
}
}
}
return EXIT_SUCCESS;
}
这里的想法是检查大范围的n,例如1,000,000 - &gt;对同一组除数的10,000,000。因此,我们将以数百万次对相同的除数进行模数尊重。使用DIV非常慢,因此根据计算范围有几种可能的方法。在我的情况下,n很可能小于10 ^ 7并且潜在除数p小于10,000 G(<10 ^ 13),因此数字小于64位且小于53位!但是产品最大残差(p-1)次n的值大于64位。所以我认为蒙哥马利方法的最简单版本不起作用,因为我们从大于64位的数字中取模数。
我发现了一些旧的power pc代码,其中使用FMA在使用双精度时获得高达106位的精确产品(我猜)。所以我将这种方法转换为AVX 512汇编程序(Intel Intrinsics)。这是FMA方法的简单版本,这是基于Dekker(1971)的工作,Dekker产品和TwoProduct的FMA版本,当试图找到/ googling背后的理由时,它们是有用的词。此论坛也讨论了这种方法(例如 here)。
int64_t factorial_FMA(uint64_t const nmin, uint64_t const nmax, const uint64_t *restrict P)
{
uint64_t n, i;
double prime_double, prime_double_reciprocal, quotient, residue;
double nr, n_double, prime_times_quotient_high, prime_times_quotient_low;
for (i = 0; i < APP_BUFLEN; i++){
residue = 2.0;
prime_double = (double)P[i];
prime_double_reciprocal = 1.0 / prime_double;
n_double = 3.0;
for (n=3; n <= nmax; n++){
nr = n_double * residue;
quotient = fma(nr, prime_double_reciprocal, rounding_constant);
quotient -= rounding_constant;
prime_times_quotient_high= prime_double * quotient;
prime_times_quotient_low = fma(prime_double, quotient, -prime_times_quotient_high);
residue = fma(residue, n, -prime_times_quotient_high) - prime_times_quotient_low;
if (residue < 0.0) residue += prime_double;
n_double += 1.0;
// Lets check if we found factor
if (nmin <= n){
if( residue == 1.0){
report_factor(n, -1, P[i]);
}
if(residue == prime_double - 1.0){
report_factor(n, 1, P[i]);
}
}
}
}
return EXIT_SUCCESS;
}
这里我使用了魔法常数
static const double rounding_constant = 6755399441055744.0;
这是双倍的2 ^ 51 + 2 ^ 52幻数。
我将其转换为AVX512(每个循环32个潜在除数)并使用IACA分析结果。它告诉吞吐量瓶颈:由于不可用的分配资源,后端和后端分配停滞不前。 我对汇编程序不是很有经验,所以我的问题是,我能做些什么来加速这个并解决这个后端的瓶颈?
AVX512代码在此处,也可以从 github
找到uint64_t factorial_AVX512_unrolled_four(uint64_t const nmin, uint64_t const nmax, const uint64_t *restrict P)
{
// we are trying to find a factor for a factorial numbers : n! +-1
//nmin is minimum n we want to report and nmax is maximum. P is table of primes
// we process 32 primes in one loop.
// naive version of the algorithm is int he function factorial_naive
// and simple version of the FMA based approach in the function factorial_simpleFMA
const double one_table[8] __attribute__ ((aligned(64))) ={1.0, 1.0, 1.0,1.0,1.0,1.0,1.0,1.0};
uint64_t n;
__m512d zero, rounding_const, one, n_double;
__m512i prime1, prime2, prime3, prime4;
__m512d residue1, residue2, residue3, residue4;
__m512d prime_double_reciprocal1, prime_double_reciprocal2, prime_double_reciprocal3, prime_double_reciprocal4;
__m512d quotient1, quotient2, quotient3, quotient4;
__m512d prime_times_quotient_high1, prime_times_quotient_high2, prime_times_quotient_high3, prime_times_quotient_high4;
__m512d prime_times_quotient_low1, prime_times_quotient_low2, prime_times_quotient_low3, prime_times_quotient_low4;
__m512d nr1, nr2, nr3, nr4;
__m512d prime_double1, prime_double2, prime_double3, prime_double4;
__m512d prime_minus_one1, prime_minus_one2, prime_minus_one3, prime_minus_one4;
__mmask8 negative_reminder_mask1, negative_reminder_mask2, negative_reminder_mask3, negative_reminder_mask4;
__mmask8 found_factor_mask11, found_factor_mask12, found_factor_mask13, found_factor_mask14;
__mmask8 found_factor_mask21, found_factor_mask22, found_factor_mask23, found_factor_mask24;
// load data and initialize cariables for loop
rounding_const = _mm512_set1_pd(rounding_constant);
one = _mm512_load_pd(one_table);
zero = _mm512_setzero_pd ();
// load primes used to sieve
prime1 = _mm512_load_epi64((__m512i *) &P[0]);
prime2 = _mm512_load_epi64((__m512i *) &P[8]);
prime3 = _mm512_load_epi64((__m512i *) &P[16]);
prime4 = _mm512_load_epi64((__m512i *) &P[24]);
// convert primes to double
prime_double1 = _mm512_cvtepi64_pd (prime1); // vcvtqq2pd
prime_double2 = _mm512_cvtepi64_pd (prime2); // vcvtqq2pd
prime_double3 = _mm512_cvtepi64_pd (prime3); // vcvtqq2pd
prime_double4 = _mm512_cvtepi64_pd (prime4); // vcvtqq2pd
// calculates 1.0/ prime
prime_double_reciprocal1 = _mm512_div_pd(one, prime_double1);
prime_double_reciprocal2 = _mm512_div_pd(one, prime_double2);
prime_double_reciprocal3 = _mm512_div_pd(one, prime_double3);
prime_double_reciprocal4 = _mm512_div_pd(one, prime_double4);
// for comparison if we have found factors for n!+1
prime_minus_one1 = _mm512_sub_pd(prime_double1, one);
prime_minus_one2 = _mm512_sub_pd(prime_double2, one);
prime_minus_one3 = _mm512_sub_pd(prime_double3, one);
prime_minus_one4 = _mm512_sub_pd(prime_double4, one);
// residue init
residue1 = _mm512_set1_pd(2.0);
residue2 = _mm512_set1_pd(2.0);
residue3 = _mm512_set1_pd(2.0);
residue4 = _mm512_set1_pd(2.0);
// double counter init
n_double = _mm512_set1_pd(3.0);
// main loop starts here. typical value for nmax can be 5,000,000 -> 10,000,000
for (n=3; n<=nmax; n++) // main loop
{
// timings for instructions:
// _mm512_load_epi64 = vmovdqa64 : L 1, T 0.5
// _mm512_load_pd = vmovapd : L 1, T 0.5
// _mm512_set1_pd
// _mm512_div_pd = vdivpd : L 23, T 16
// _mm512_cvtepi64_pd = vcvtqq2pd : L 4, T 0,5
// _mm512_mul_pd = vmulpd : L 4, T 0.5
// _mm512_fmadd_pd = vfmadd132pd, vfmadd213pd, vfmadd231pd : L 4, T 0.5
// _mm512_fmsub_pd = vfmsub132pd, vfmsub213pd, vfmsub231pd : L 4, T 0.5
// _mm512_sub_pd = vsubpd : L 4, T 0.5
// _mm512_cmplt_pd_mask = vcmppd : L ?, Y 1
// _mm512_mask_add_pd = vaddpd : L 4, T 0.5
// _mm512_cmpeq_pd_mask = vcmppd L ?, Y 1
// _mm512_kor = korw L 1, T 1
// nr = residue * n
nr1 = _mm512_mul_pd (residue1, n_double);
nr2 = _mm512_mul_pd (residue2, n_double);
nr3 = _mm512_mul_pd (residue3, n_double);
nr4 = _mm512_mul_pd (residue4, n_double);
// quotient = nr * 1.0/ prime_double + rounding_constant
quotient1 = _mm512_fmadd_pd(nr1, prime_double_reciprocal1, rounding_const);
quotient2 = _mm512_fmadd_pd(nr2, prime_double_reciprocal2, rounding_const);
quotient3 = _mm512_fmadd_pd(nr3, prime_double_reciprocal3, rounding_const);
quotient4 = _mm512_fmadd_pd(nr4, prime_double_reciprocal4, rounding_const);
// quotient -= rounding_constant, now quotient is rounded to integer
// countient should be at maximum nmax (10,000,000)
quotient1 = _mm512_sub_pd(quotient1, rounding_const);
quotient2 = _mm512_sub_pd(quotient2, rounding_const);
quotient3 = _mm512_sub_pd(quotient3, rounding_const);
quotient4 = _mm512_sub_pd(quotient4, rounding_const);
// now we calculate high and low for prime * quotient using decker product (FMA).
// quotient is calculated using approximation but this is accurate for given quotient
prime_times_quotient_high1 = _mm512_mul_pd(quotient1, prime_double1);
prime_times_quotient_high2 = _mm512_mul_pd(quotient2, prime_double2);
prime_times_quotient_high3 = _mm512_mul_pd(quotient3, prime_double3);
prime_times_quotient_high4 = _mm512_mul_pd(quotient4, prime_double4);
prime_times_quotient_low1 = _mm512_fmsub_pd(quotient1, prime_double1, prime_times_quotient_high1);
prime_times_quotient_low2 = _mm512_fmsub_pd(quotient2, prime_double2, prime_times_quotient_high2);
prime_times_quotient_low3 = _mm512_fmsub_pd(quotient3, prime_double3, prime_times_quotient_high3);
prime_times_quotient_low4 = _mm512_fmsub_pd(quotient4, prime_double4, prime_times_quotient_high4);
// now we calculate new reminder using decker product and using original values
// we subtract above calculated prime * quotient (quotient is aproximation)
residue1 = _mm512_fmsub_pd(residue1, n_double, prime_times_quotient_high1);
residue2 = _mm512_fmsub_pd(residue2, n_double, prime_times_quotient_high2);
residue3 = _mm512_fmsub_pd(residue3, n_double, prime_times_quotient_high3);
residue4 = _mm512_fmsub_pd(residue4, n_double, prime_times_quotient_high4);
residue1 = _mm512_sub_pd(residue1, prime_times_quotient_low1);
residue2 = _mm512_sub_pd(residue2, prime_times_quotient_low2);
residue3 = _mm512_sub_pd(residue3, prime_times_quotient_low3);
residue4 = _mm512_sub_pd(residue4, prime_times_quotient_low4);
// lets check if reminder < 0
negative_reminder_mask1 = _mm512_cmplt_pd_mask(residue1,zero);
negative_reminder_mask2 = _mm512_cmplt_pd_mask(residue2,zero);
negative_reminder_mask3 = _mm512_cmplt_pd_mask(residue3,zero);
negative_reminder_mask4 = _mm512_cmplt_pd_mask(residue4,zero);
// we and prime back to reminder using mask if it was < 0
residue1 = _mm512_mask_add_pd(residue1, negative_reminder_mask1, residue1, prime_double1);
residue2 = _mm512_mask_add_pd(residue2, negative_reminder_mask2, residue2, prime_double2);
residue3 = _mm512_mask_add_pd(residue3, negative_reminder_mask3, residue3, prime_double3);
residue4 = _mm512_mask_add_pd(residue4, negative_reminder_mask4, residue4, prime_double4);
n_double = _mm512_add_pd(n_double,one);
// if we are below nmin then we continue next iteration
if (n < nmin) continue;
// Lets check if we found any factors, residue 1 == n!-1
found_factor_mask11 = _mm512_cmpeq_pd_mask(one, residue1);
found_factor_mask12 = _mm512_cmpeq_pd_mask(one, residue2);
found_factor_mask13 = _mm512_cmpeq_pd_mask(one, residue3);
found_factor_mask14 = _mm512_cmpeq_pd_mask(one, residue4);
// residue prime -1 == n!+1
found_factor_mask21 = _mm512_cmpeq_pd_mask(prime_minus_one1, residue1);
found_factor_mask22 = _mm512_cmpeq_pd_mask(prime_minus_one2, residue2);
found_factor_mask23 = _mm512_cmpeq_pd_mask(prime_minus_one3, residue3);
found_factor_mask24 = _mm512_cmpeq_pd_mask(prime_minus_one4, residue4);
if (found_factor_mask12 | found_factor_mask11 | found_factor_mask13 | found_factor_mask14 |
found_factor_mask21 | found_factor_mask22 | found_factor_mask23|found_factor_mask24)
{ // we find factor very rarely
double *residual_list1 = (double *) &residue1;
double *residual_list2 = (double *) &residue2;
double *residual_list3 = (double *) &residue3;
double *residual_list4 = (double *) &residue4;
double *prime_list1 = (double *) &prime_double1;
double *prime_list2 = (double *) &prime_double2;
double *prime_list3 = (double *) &prime_double3;
double *prime_list4 = (double *) &prime_double4;
for (int i=0; i <8; i++){
if( residual_list1[i] == 1.0)
{
report_factor((uint64_t) n, -1, (uint64_t) prime_list1[i]);
}
if( residual_list2[i] == 1.0)
{
report_factor((uint64_t) n, -1, (uint64_t) prime_list2[i]);
}
if( residual_list3[i] == 1.0)
{
report_factor((uint64_t) n, -1, (uint64_t) prime_list3[i]);
}
if( residual_list4[i] == 1.0)
{
report_factor((uint64_t) n, -1, (uint64_t) prime_list4[i]);
}
if(residual_list1[i] == (prime_list1[i] - 1.0))
{
report_factor((uint64_t) n, 1, (uint64_t) prime_list1[i]);
}
if(residual_list2[i] == (prime_list2[i] - 1.0))
{
report_factor((uint64_t) n, 1, (uint64_t) prime_list2[i]);
}
if(residual_list3[i] == (prime_list3[i] - 1.0))
{
report_factor((uint64_t) n, 1, (uint64_t) prime_list3[i]);
}
if(residual_list4[i] == (prime_list4[i] - 1.0))
{
report_factor((uint64_t) n, 1, (uint64_t) prime_list4[i]);
}
}
}
}
return EXIT_SUCCESS;
}
答案 0 :(得分:1)
正如一些评论者所建议的那样:“后端”瓶颈是此代码的期望。这表明您要保持良好的饮食状态,这就是您想要的。
查看报告,本节应该有机会:
// Lets check if we found any factors, residue 1 == n!-1
found_factor_mask11 = _mm512_cmpeq_pd_mask(one, residue1);
found_factor_mask12 = _mm512_cmpeq_pd_mask(one, residue2);
found_factor_mask13 = _mm512_cmpeq_pd_mask(one, residue3);
found_factor_mask14 = _mm512_cmpeq_pd_mask(one, residue4);
// residue prime -1 == n!+1
found_factor_mask21 = _mm512_cmpeq_pd_mask(prime_minus_one1, residue1);
found_factor_mask22 = _mm512_cmpeq_pd_mask(prime_minus_one2, residue2);
found_factor_mask23 = _mm512_cmpeq_pd_mask(prime_minus_one3, residue3);
found_factor_mask24 = _mm512_cmpeq_pd_mask(prime_minus_one4, residue4);
if (found_factor_mask12 | found_factor_mask11 | found_factor_mask13 | found_factor_mask14 |
found_factor_mask21 | found_factor_mask22 | found_factor_mask23|found_factor_mask24)
根据IACA分析:
| 1 | 1.0 | | | | | | | | kmovw r11d, k0
| 1 | 1.0 | | | | | | | | kmovw eax, k1
| 1 | 1.0 | | | | | | | | kmovw ecx, k2
| 1 | 1.0 | | | | | | | | kmovw esi, k3
| 1 | 1.0 | | | | | | | | kmovw edi, k4
| 1 | 1.0 | | | | | | | | kmovw r8d, k5
| 1 | 1.0 | | | | | | | | kmovw r9d, k6
| 1 | 1.0 | | | | | | | | kmovw r10d, k7
| 1 | | 1.0 | | | | | | | or r11d, eax
| 1 | | | | | | | 1.0 | | or r11d, ecx
| 1 | | 1.0 | | | | | | | or r11d, esi
| 1 | | | | | | | 1.0 | | or r11d, edi
| 1 | | 1.0 | | | | | | | or r11d, r8d
| 1 | | | | | | | 1.0 | | or r11d, r9d
| 1* | | | | | | | | | or r11d, r10d
处理器将所得的比较掩码(k0-k7)移至常规寄存器,以进行“或”操作。您应该能够消除这些移动,并且以6步对8步进行“或”汇总。
注意:found_factor_mask类型定义为__mmask8
,在其中应为__mask16
(在512位fector中有16x双浮点数)。这可能会使编译器进行一些优化。如果没有,请按照评论者的提示放到程序集上。
与之相关:迭代的哪一部分触发此or-mask子句?正如另一位评论者所观察到的那样,您应该可以使用累积的“或”操作来展开此操作。在每个展开的迭代结束时(或N次迭代之后)检查累积的“或”值,如果它是“ true”,请返回并重新执行该值以找出哪个n值触发了它。
(而且,您可以在“滚动”内进行二进制搜索以找到匹配的n值-可能会有所收获)。
接下来,您应该可以摆脱这种中间循环检查:
// if we are below nmin then we continue next iteration, we
if (n < nmin) continue;
其中出现在这里:
| 1* | | | | | | | | | cmp r14, 0x3e8
| 0*F | | | | | | | | | jb 0x229
这可能不是一个巨大的收益,因为预测变量(可能)正确地(大部分)是正确的,但是您应该通过对两个“阶段”使用两个不同的循环来获得一些收益:
即使您获得一个周期,也就是3%。而且,由于上面通常与大型“或”操作有关,因此可能会发现更多的聪明之处。