我有一个名为" confidence_table"的tibble。有谁知道为什么如果我尝试使用mutate动词添加新列,这不起作用?
# A tibble: 12 x 3
# Groups: Age [2]
Age Condition Prop
<fctr> <fctr> <dbl>
0 old 0.73993056
1 old 0.75590278
0 old 0.15069444
1 old 0.13090278
0 new 0.06388889
1 new 0.04965278
0 new 0.05902778
1 new 0.05416667
0 lure 0.23055556
1 lure 0.23645833
0 lure 0.13819444
1 lure 0.12013889
我在base r中使用了这个函数,它可以正常工作
confidence_table$Confidence <- as.factor(rep(c("HC", "LC"), times = 3, each = 2))
# A tibble: 12 x 4
# Groups: Age [2]
Age Condition Prop Confidence
<fctr> <fctr> <dbl> <fctr>
0 old 0.73993056 HC
1 old 0.75590278 HC
0 old 0.15069444 LC
1 old 0.13090278 LC
0 new 0.06388889 HC
1 new 0.04965278 HC
0 new 0.05902778 LC
1 new 0.05416667 LC
0 lure 0.23055556 HC
1 lure 0.23645833 HC
0 lure 0.13819444 LC
1 lure 0.12013889 LC
这是与基本r代码一起使用的预期输出。 但是,如果我使用:
confidence_table <- confidence_table %>%
mutate(Confidence = rep(c("HC", "LC"), times = 3, each = 2))
它说:
mutate_impl(.data,dots)出错:
列置信度必须为长度6(组大小)或1,而不是12
它出了什么问题?
答案 0 :(得分:0)
在这种情况下,错误消息实际上应该可以帮助您找出问题所在。请注意Derived Column
。
2 x 3 x 2 = 12
正如评论中所指出的,解决这个问题的一种方法是先confidence_table %>%
mutate(Confidence = rep(c("HC", "LC"), times = 3, each = 2))
# Error in mutate_impl(.data, dots) :
# Column `Confidence` must be length 6 (the group size) or one, not 12
。
ungroup
你也可以在没有confidence_table %>%
ungroup() %>%
mutate(Confidence = rep(c("HC", "LC"), times = 3, each = 2))
# # A tibble: 12 x 4
# Age Condition Prop Confidence
# <int> <chr> <dbl> <chr>
# 1 0 old 0.73993056 HC
# 2 1 old 0.75590278 HC
# 3 0 old 0.15069444 LC
# 4 1 old 0.13090278 LC
# 5 0 new 0.06388889 HC
# 6 1 new 0.04965278 HC
# 7 0 new 0.05902778 LC
# 8 1 new 0.05416667 LC
# 9 0 lure 0.23055556 HC
# 10 1 lure 0.23645833 HC
# 11 0 lure 0.13819444 LC
# 12 1 lure 0.12013889 LC
的情况下首先执行此操作:
ungroup
另一种选择是分组&#34;条件&#34;相反 - 可能是这样的:
confidence_table %>%
mutate(Confidence = rep(c("HC", "LC"), times = 3)) # 2x3 = 6
# # A tibble: 12 x 4
# # Groups: Age [2]
# Age Condition Prop Confidence
# <int> <chr> <dbl> <chr>
# 1 0 old 0.73993056 HC
# 2 1 old 0.75590278 HC
# 3 0 old 0.15069444 LC
# 4 1 old 0.13090278 LC
# 5 0 new 0.06388889 HC
# 6 1 new 0.04965278 HC
# 7 0 new 0.05902778 LC
# 8 1 new 0.05416667 LC
# 9 0 lure 0.23055556 HC
# 10 1 lure 0.23645833 HC
# 11 0 lure 0.13819444 LC
# 12 1 lure 0.12013889 LC
示例数据:
confidence_table %>%
group_by(Condition) %>%
mutate(Confidence = c("HC", "LC")[cumsum(Age == 0)])