我正在尝试使用Phoenix来填充带有动态内容的HBase表。
因此,我在sqlline
工具中对动态列(https://phoenix.apache.org/dynamic_columns.html)进行了一些实验。
E.g。我连续运行以下查询:
CREATE TABLE t1 (a VARCHAR, b INTEGER PRIMARY KEY);
UPSERT INTO t1 VALUES ('test1', 1);
// Insert new row with a third column 'c'
UPSERT INTO t1 (a, b, c INTEGER) VALUES('test2', 2, 3);
SELECT * FROM t1;
+--------+----+
| A | B |
+--------+----+
| test1 | 1 |
| test2 | 2 |
+--------+----+
// Add the new column
ALTER TABLE t1 ADD IF NOT EXISTS c INTEGER;
SELECT * FROM t1;
+--------+----+-------+
| A | B | C |
+--------+----+-------+
| test1 | 1 | null |
| test2 | 2 | 3 |
+--------+----+-------+
这是向现有表格添加不同数据的好方法,例如如果需要新列(例如,由于新的数据模式)。
这适用于我的sqlline
工具,但现在我想在我的Spark应用程序中使用Phoenix API
将不同的DataFrames
保存到我的HBase表中。
保存包含与表本身相同列的DataFrame
对象,一切正常。但是当我尝试添加另一个DataFrame
的新列时,我会得到一个例外。
这是我的命令:
val readDF = sqlContext.read.format("org.apache.phoenix.spark").option("table", "T1").option("zkUrl", "jdbc:phoenix:zim1ext-vm.et-it.hs-offenburg.de:2181:/hbase-unsecure").load()
readDF.printSchema
readDF: org.apache.spark.sql.DataFrame = [A: string, B: int, C: int]
root
|-- A: string (nullable = true)
|-- B: integer (nullable = true)
|-- C: integer (nullable = true)
val newDF = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true").option("delimiter", ";").load("/public/test4.csv")
newDF.printSchema
newDF: org.apache.spark.sql.DataFrame = [B: int, C: int, D: string]
root
|-- B: integer (nullable = true)
|-- C: integer (nullable = true)
|-- D: string (nullable = true) // This is a new column!!!
newDF.write.format("org.apache.phoenix.spark")
.mode("overwrite")
.option("table", "T1")
.option("zkUrl", "jdbc:phoenix:server-url:2181:/hbase-unsecure")
.save()
我想,Spark能够通过UPSERT
对象使用新列执行DataFrame
,但是我得到了这个例外:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 14.0 failed 4 times, most recent failure: Lost task 0.3 in stage 14.0 (TID 31, server-url): java.sql.SQLException: Unable to resolve these column names:
D
Available columns with column families:
0.A,B,0.C
at org.apache.phoenix.util.PhoenixRuntime.generateColumnInfo(PhoenixRuntime.java:475)
at org.apache.phoenix.mapreduce.util.PhoenixConfigurationUtil.getUpsertColumnMetadataList(PhoenixConfigurationUtil.java:252)
at org.apache.phoenix.spark.DataFrameFunctions$$anonfun$1.apply(DataFrameFunctions.scala:48)
at org.apache.phoenix.spark.DataFrameFunctions$$anonfun$1.apply(DataFrameFunctions.scala:44)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$22.apply(RDD.scala:717)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$22.apply(RDD.scala:717)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:277)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1433)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1421)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1420)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1420)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:801)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:801)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:801)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1642)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1601)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1590)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:622)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1831)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1844)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1921)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1144)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply(PairRDDFunctions.scala:1074)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply(PairRDDFunctions.scala:1074)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:323)
at org.apache.spark.rdd.PairRDDFunctions.saveAsNewAPIHadoopDataset(PairRDDFunctions.scala:1074)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopFile$2.apply$mcV$sp(PairRDDFunctions.scala:994)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopFile$2.apply(PairRDDFunctions.scala:985)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopFile$2.apply(PairRDDFunctions.scala:985)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:323)
at org.apache.spark.rdd.PairRDDFunctions.saveAsNewAPIHadoopFile(PairRDDFunctions.scala:985)
at org.apache.phoenix.spark.DataFrameFunctions.saveToPhoenix(DataFrameFunctions.scala:58)
at org.apache.phoenix.spark.DataFrameFunctions.saveToPhoenix(DataFrameFunctions.scala:27)
at org.apache.phoenix.spark.DefaultSource.createRelation(DefaultSource.scala:47)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:222)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:32)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:37)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:39)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:41)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:43)
at $iwC$$iwC$$iwC.<init>(<console>:45)
at $iwC$$iwC.<init>(<console>:47)
at $iwC.<init>(<console>:49)
at <init>(<console>:51)
at .<init>(<console>:55)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at sun.reflect.GeneratedMethodAccessor35.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.zeppelin.spark.Utils.invokeMethod(Utils.java:38)
at org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:991)
at org.apache.zeppelin.spark.SparkInterpreter.interpretInput(SparkInterpreter.java:1197)
at org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:1164)
at org.apache.zeppelin.spark.SparkInterpreter.interpret(SparkInterpreter.java:1157)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:101)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:502)
at org.apache.zeppelin.scheduler.Job.run(Job.java:175)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.sql.SQLException: Unable to resolve these column names:
D
Available columns with column families:
0.A,B,0.C
at org.apache.phoenix.util.PhoenixRuntime.generateColumnInfo(PhoenixRuntime.java:475)
at org.apache.phoenix.mapreduce.util.PhoenixConfigurationUtil.getUpsertColumnMetadataList(PhoenixConfigurationUtil.java:252)
at org.apache.phoenix.spark.DataFrameFunctions$$anonfun$1.apply(DataFrameFunctions.scala:48)
at org.apache.phoenix.spark.DataFrameFunctions$$anonfun$1.apply(DataFrameFunctions.scala:44)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$22.apply(RDD.scala:717)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$22.apply(RDD.scala:717)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:313)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:277)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
... 3 more
我现在的问题是:是否有可能使用Spark的Phoenix API中的DataFrames将新列添加到HBase表中?也许像.option("dynamic-columns", "true")
或类似的东西?