我试图在图表中使用Numpy数组,使用数据集输入数据。
我已经阅读了this,但我不太了解如何在数据集中提供占位符数组。
如果我们举一个简单的例子,我会从:
开始A = np.arange(4)
B = np.arange(10, 14)
a = tf.placeholder(tf.float32, [None])
b = tf.placeholder(tf.float32, [None])
c = tf.add(a, b)
with tf.Session() as sess:
for i in range(10):
x = sess.run(c, feed_dict={a: A, b:B})
print(i, x)
然后我尝试修改它以使用数据集,如下所示:
A = np.arange(4)
B = np.arange(10, 14)
a = tf.placeholder(tf.int32, A.shape)
b = tf.placeholder(tf.int32, B.shape)
c = tf.add(a, b)
dataset = tf.data.Dataset.from_tensors((a, b))
iterator = dataset.make_initializable_iterator()
with tf.Session() as sess3:
sess3.run(tf.global_variables_initializer())
sess3.run(iterator.initializer, feed_dict={a: A, b: B})
for i in range(10):
x = sess3.run(c)
print(i, x)
如果我运行此操作,我会得到' InvalidArgumentError:您必须为占位符张量提供一个值...'
直到for循环的代码模仿示例here,但我不知道如何使用占位符a& b没有为每次调用sess3.run(c)提供一个feed_dict [这将是昂贵的]。我怀疑我必须以某种方式使用迭代器,但我不明白如何。
更新
在选择示例时,我看起来过于简单了。我真正想要做的是在训练神经网络时使用数据集,或类似的。
对于一个更明智的问题,我将如何使用数据集来提供下面的占位符(尽管想象X和Y_true更长......)。文档将我带到循环开始的点,然后我不确定。
X = np.arange(8.).reshape(4, 2)
Y_true = np.array([0, 0, 1, 1])
x = tf.placeholder(tf.float32, [None, 2], name='x')
y_true = tf.placeholder(tf.float32, [None], name='y_true')
w = tf.Variable(np.random.randn(2, 1), name='w', dtype=tf.float32)
y = tf.squeeze(tf.matmul(x, w), name='y')
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
labels=y_true, logits=y),
name='x_entropy')
# set optimiser
optimiser = tf.train.AdamOptimizer().minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
_, loss_out = sess.run([optimiser, loss], feed_dict={x: X, y_true:Y_true})
print(i, loss_out)
尝试以下操作只会获得InvalidArgumentError
X = np.arange(8.).reshape(4, 2)
Y_true = np.array([0, 0, 1, 1])
x = tf.placeholder(tf.float32, [None, 2], name='x')
y_true = tf.placeholder(tf.float32, [None], name='y_true')
dataset = tf.data.Dataset.from_tensor_slices((x, y_true))
iterator = dataset.make_initializable_iterator()
w = tf.Variable(np.random.randn(2, 1), name='w', dtype=tf.float32)
y = tf.squeeze(tf.matmul(x, w), name='y')
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
labels=y_true, logits=y),
name='x_entropy')
# set optimiser
optimiser = tf.train.AdamOptimizer().minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(iterator.initializer, feed_dict={x: X,
y_true: Y_true})
for i in range(100):
_, loss_out = sess.run([optimiser, loss])
print(i, loss_out)
答案 0 :(得分:4)
使用iterator.get_next()
从Dataset
获取元素,如:
next_element = iterator.get_next()
而不是初始化迭代器
sess.run(iterator.initializer, feed_dict={a:A, b:B})
并且至少从Dataset
value = sess.run(next_element)
修改强>
上面的代码只返回Dataset
中的元素。数据集API旨在为features
提供labels
和input_fn
,因此预处理的所有其他计算都应在数据集API中执行。如果要添加元素,则应定义应用于元素的函数,例如:
def add_fn(exp1, exp2):
return tf.add(exp1, exp2)
并且您可以将这些功能映射到数据集:
dataset = dataset.map(add_fn)
完整的代码示例:
A = np.arange(4)
B = np.arange(10, 14)
a = tf.placeholder(tf.int32, A.shape)
b = tf.placeholder(tf.int32, B.shape)
#c = tf.add(a, b)
def add_fn(exp1, exp2):
return tf.add(exp1, exp2)
dataset = tf.data.Dataset.from_tensors((a, b))
dataset = dataset.map(add_fn)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
sess.run(iterator.initializer, feed_dict={a: A, b: B})
# just one element at dataset
x = sess.run(next_element)
print(x)
答案 1 :(得分:2)
您更复杂的示例中的问题是您使用相同的tf.placeholder()
节点作为Dataset.from_tensor_slices()
的输入(这是正确的)和网络本身(其中)导致InvalidArgumentError
。正如JEK在their answer中指出的那样,您应该使用iterator.get_next()
作为网络的输入,如下所示(请注意,我添加了其他几个修复程序)使代码按原样运行:
X = np.arange(8.).reshape(4, 2)
Y_true = np.array([0, 0, 1, 1])
x = tf.placeholder(tf.float32, [None, 2], name='x')
y_true = tf.placeholder(tf.float32, [None], name='y_true')
dataset = tf.data.Dataset.from_tensor_slices((x, y_true))
# You will need to repeat the input (which has 4 elements) to be able to take
# 100 steps.
dataset = dataset.repeat()
iterator = dataset.make_initializable_iterator()
# Use `iterator.get_next()` to create tensors that will consume values from the
# dataset.
x_next, y_true_next = iterator.get_next()
w = tf.Variable(np.random.randn(2, 1), name='w', dtype=tf.float32)
# The `x_next` tensor is a vector (i.e. a row of `X`), so you will need to
# convert it to a matrix or apply batching in the dataset to make it work with
# `tf.matmul()`
x_next = tf.expand_dims(x_next, 0)
y = tf.squeeze(tf.matmul(x_next, w), name='y') # Use `x_next` here.
loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
labels=y_true_next, logits=y), # Use `y_true_next` here.
name='x_entropy')
# set optimiser
optimiser = tf.train.AdamOptimizer().minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(iterator.initializer, feed_dict={x: X,
y_true: Y_true})
for i in range(100):
_, loss_out = sess.run([optimiser, loss])
print(i, loss_out)