我试图将ARules算法的输出转换为适当的数据集。 这是我得到的示例输出
以下是生成它的示例代码。
data("Adult")
## Mine association rules.
rules <- apriori(Adult,
parameter = list(supp = 0.5, conf = 0.9,
target = "rules"))
ruledf = data.frame(
lhs = labels(lhs(rules)),
rhs = labels(rhs(rules)),
rules@quality)
head(ruled)
lhs rhs support confidence lift count
1 {} {capital-gain=None} 0.9173867 0.9173867 1.0000000 44807
2 {} {capital-loss=None} 0.9532779 0.9532779 1.0000000 46560
3 {hours-per-week=Full-time} {capital-gain=None} 0.5435895 0.9290688 1.0127342 26550
4 {hours-per-week=Full-time} {capital-loss=None} 0.5606650 0.9582531 1.0052191 27384
5 {sex=Male} {capital-gain=None} 0.6050735 0.9051455 0.9866565 29553
6 {sex=Male} {capital-loss=None} 0.6331027 0.9470750 0.9934931 30922
我将只考虑lhs rhs列用于我的数据操作
以下是我希望如何将上述内容转换为以下结构的示例。
sex hours-per-week capital-gain
NA Full-time None
NA Full-time None
Male NA None
Male NA None
提前致谢