model = Sequential()
model.add(keras.layers.InputLayer(input_shape=input_shape))
model.add(keras.layers.convolutional.Conv2D(filters, filtersize, strides=(1, 1), padding='valid', data_format="channels_last", activation='relu'))
model.summary()
和输出摘要是:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_10 (InputLayer) (None, 300, 300, 3) 0
_________________________________________________________________
conv2d_16 (Conv2D) (None, 296, 296, 10) 760
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 296, 148, 5) 0
_________________________________________________________________
上面对于conv2d_16第10层是深度,其中作为Maxpooling第5层,怎么可能?
答案 0 :(得分:1)
您很可能正在使用池化层中的data_format='channels_first'
设置。
我看到您将'channels_last'
添加到卷积层,但您可能没有将其添加到池化层。
如果要更改keras的默认设置,请找到<user>/.keras/keras.json
文件并在其中进行更改。