我有一个元组列表to_order
,例如:
to_order = [(0, 1), (1, 3), (2, 2), (3,2)]
一个列表,它给出了应用于to_order
每个元组的第二个元素的顺序:
order = [2, 1, 3]
所以我正在寻找获得此输出的方法:
ordered_list = [(2, 2), (3,2), (0, 1), (1, 3)]
有什么想法吗?
答案 0 :(得分:19)
您可以提供key
来检查order
中的索引(第二个元素)并根据它进行排序:
to_order = [(0, 1), (1, 3), (2, 2), (3,2)]
order = [2, 1, 3]
print(sorted(to_order, key=lambda item: order.index(item[1]))) # [(2, 2), (3, 2), (0, 1), (1, 3)]
修改强>
因为,关于时间复杂性的讨论开始了......在这里,以下算法在O(n+m)
中运行,使用Eric的输入示例:
N = 5
to_order = [(randrange(N), randrange(N)) for _ in range(10*N)]
order = list(set(pair[1] for pair in to_order))
shuffle(order)
def eric_sort(to_order, order):
bins = {}
for pair in to_order:
bins.setdefault(pair[1], []).append(pair)
return [pair for i in order for pair in bins[i]]
def alfasin_new_sort(to_order, order):
arr = [[] for i in range(len(order))]
d = {k:v for v, k in enumerate(order)}
for item in to_order:
arr[d[item[1]]].append(item)
return [item for sublist in arr for item in sublist]
from timeit import timeit
print("eric_sort", timeit("eric_sort(to_order, order)", setup=setup, number=1000))
print("alfasin_new_sort", timeit("alfasin_new_sort(to_order, order)", setup=setup, number=1000))
输出:
eric_sort 59.282021682999584
alfasin_new_sort 44.28244407700004
答案 1 :(得分:18)
您可以根据第二个元素在列表的dict中分发元组,并迭代order
索引以获取排序列表:
from collections import defaultdict
to_order = [(0, 1), (1, 3), (2, 2), (3, 2)]
order = [2, 1, 3]
bins = defaultdict(list)
for pair in to_order:
bins[pair[1]].append(pair)
print(bins)
# defaultdict(<class 'list'>, {1: [(0, 1)], 3: [(1, 3)], 2: [(2, 2), (3, 2)]})
print([pair for i in order for pair in bins[i]])
# [(2, 2), (3, 2), (0, 1), (1, 3)]
sort
或index
不需要,输出稳定。
此算法类似于假定的duplicate中提到的mapping
。只有当to_order
和order
具有相同的长度时,此相关联的答案才有效,而OP的问题并非如此。
此算法在to_order
的每个元素上迭代两次。复杂性为O(n)
。 @ alfasin的第一个算法慢得多(O(n * m * log n)
),但他的第二个算法也是O(n)
。
这是0
和1000
之间10000个随机对的列表。我们提取唯一的第二个元素并对其进行随机播放以定义order
:
from random import randrange, shuffle
from collections import defaultdict
from timeit import timeit
from itertools import chain
N = 1000
to_order = [(randrange(N), randrange(N)) for _ in range(10*N)]
order = list(set(pair[1] for pair in to_order))
shuffle(order)
def eric(to_order, order):
bins = defaultdict(list)
for pair in to_order:
bins[pair[1]].append(pair)
return list(chain.from_iterable(bins[i] for i in order))
def alfasin1(to_order, order):
arr = [[] for i in range(len(order))]
d = {k:v for v, k in enumerate(order)}
for item in to_order:
arr[d[item[1]]].append(item)
return [item for sublist in arr for item in sublist]
def alfasin2(to_order, order):
return sorted(to_order, key=lambda item: order.index(item[1]))
print(eric(to_order, order) == alfasin1(to_order, order))
# True
print(eric(to_order, order) == alfasin2(to_order, order))
# True
print("eric", timeit("eric(to_order, order)", globals=globals(), number=100))
# eric 0.3117517130003762
print("alfasin1", timeit("alfasin1(to_order, order)", globals=globals(), number=100))
# alfasin1 0.36100843100030033
print("alfasin2", timeit("alfasin2(to_order, order)", globals=globals(), number=100))
# alfasin2 15.031453827000405
答案 2 :(得分:3)
另一个解决方案:
[item for key in order for item in filter(lambda x: x[1] == key, to_order)]
此解决方案首先使用order
,对to_order
中的每个key
进行过滤order
。
等同于:
ordered = []
for key in order:
for item in filter(lambda x: x[1] == key, to_order):
ordered.append(item)
更短,但我还没有意识到使用列表理解的方法:
ordered = []
for key in order:
ordered.extend(filter(lambda x: x[1] == key, to_order))
注意:如果ValueError
包含to_order
x
不在x[1]
的元组order
,则不会抛出{{1}}。
答案 3 :(得分:2)
我个人更喜欢list
对象sort
函数,而不是内置sort
,它会生成新列表而不是更改列表。
to_order = [(0, 1), (1, 3), (2, 2), (3,2)]
order = [2, 1, 3]
to_order.sort(key=lambda x: order.index(x[1]))
print(to_order)
>[(2, 2), (3, 2), (0, 1), (1, 3)]
关于方式的一点解释:排序方法的
key
参数基本上是preprocesses
列表,ranks
基于度量的所有值。在我们的例子中,order.index()
查看当前处理的项目的第一次出现并返回其位置。
x = [1,2,3,4,5,3,3,5]
print x.index(5)
>4