我正在研究使用优先级队列的dijkstra算法。我一直在做很多研究,我认为我的代码遵循算法,但在比较最短路径时我无法进入条件
void dijkstra( int startingID ) {
priority_queue<Vertex*, vector<Vertex*>, PathWeightComparer> dijkstra_queue{};
vector<Vertex*> vert;
vert = _vertices;
int n = vert.size();
vector< double > dis(n);
for (int i = 0; i < n; i++)
{
dis[i] = std::numeric_limits< double >::infinity();
}
vert[startingID]->setPathWeight(startingID);
dis[startingID] = 0;
Vertex* temp = vert[startingID];
dijkstra_queue.push(temp);
while (!dijkstra_queue.empty())
{
double dist = dijkstra_queue.top()->getPathWeight();
double u = dijkstra_queue.top()->getId();
dijkstra_queue.pop();
for (auto i : vert)
{
double v = i->getId();
double weight = i->getPathWeight();
double distance_total = dist + weight;
cout << "distance_total " << distance_total << " dis[v] " << dis[v] << endl;
if (distance_total < dis[v]) //PROBLEM
{
dis[v] = distance_total;
Vertex* temp2 = i;
temp2->setPathWeight(dis[v]);
dijkstra_queue.push(temp2);
}
}
}
}
};
这是图表类
class Graph
{
vector<Vertex*> _vertices; // All vertices in the graph (vertex id == index)
int _last_startingID = -1;
这是顶点类
class Vertex
{
private:
int _id; // ID (key) of given vertice
bool _known = false; // Dijkstra's algorithm "known" flag
Vertex* _path = nullptr; // Dijkstra's algorithm parent vertex pointer
// Weight of path through graph - starts at a true infinity (inf)
double _path_weight = std::numeric_limits<double>::infinity();
我试图只包含与dijkstra函数相关的代码,但如果有什么不清楚我可以添加更多。
答案 0 :(得分:0)
您的算法实施不正确。
从队列中struct X
{
int a;
};
void fun(struct X *b)
{
struct X c;
c=*b;
printf("%d %d",c,c.a);
}
int main()
{
struct X d;
int p;
p=20;
printf("Hello World");
fun(&p);
return 0;
}
顶点pop()
之后(因为它与源的距离最低),您应该只检查可以从u
直接到达的顶点(即从u
到该顶点存在一条边。)
您当前的实现似乎是循环遍历所有顶点,无论它们是否可以从u
直接到达,并且可能因此,您正在做一些奇怪的距离计算,这是没有意义的。更具体地说,您的实现中的u
似乎是荒谬的。
Dijkstra算法背后的关键理念是:
distance_total