我正在尝试在狗品种数据集上训练我的神经网络。在前馈之后,在损失计算期间它会抛出此错误:
RuntimeError: Assertion `THIndexTensor_(size)(target, 0) == batch_size' failed. at d:\projects\pytorch\torch\lib\thnn\generic/ClassNLLCriterion.c:54
代码:
criterion =nn.CrossEntropyLoss()
optimizer=optim.Adam(net.parameters(),lr=0.001)
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
print(len(trainloader))
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs, labels = Variable(inputs).float(), Variable(labels).float().type(torch.LongTensor)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.data[0]
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
此行中生成错误:
loss = criterion(outputs, labels)
问题是什么?
答案 0 :(得分:2)
我认为问题是您在张量labels
上缺少批量维度。该错误表示0th
维度的大小不等于批量大小。
尝试更改此内容:
loss = criterion(outputs, labels.unsqueeze(0))
请注意,outputs
张量应该比对应于每个标签的分数的labels
张量多一个维度,而labels
应该只包含正确标签的索引。