`THIndexTensor_(size)(target,0)== batch_size'失败。在d:\ projects \ pytorch \ torch \ lib \ thnn \ generic / ClassNLLCriterion.c:54

时间:2017-11-26 00:59:30

标签: machine-learning neural-network deep-learning conv-neural-network pytorch

我正在尝试在狗品种数据集上训练我的神经网络。在前馈之后,在损失计算期间它会抛出此错误:

RuntimeError: Assertion `THIndexTensor_(size)(target, 0) == batch_size' failed.  at d:\projects\pytorch\torch\lib\thnn\generic/ClassNLLCriterion.c:54 

代码:

criterion =nn.CrossEntropyLoss()
optimizer=optim.Adam(net.parameters(),lr=0.001)


for epoch in range(10):  # loop over the dataset multiple times
        running_loss = 0.0
        print(len(trainloader))
        for i, data in enumerate(trainloader, 0):
            # get the inputs
            inputs, labels  = data

            # wrap them in Variable
            inputs, labels = Variable(inputs).float(), Variable(labels).float().type(torch.LongTensor)


            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs = net(inputs)

            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # print statistics
            running_loss += loss.data[0]
            if i % 2000 == 1999:    # print every 2000 mini-batches
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0

print('Finished Training')

此行中生成错误:

loss = criterion(outputs, labels)

问题是什么?

1 个答案:

答案 0 :(得分:2)

我认为问题是您在张量labels上缺少批量维度。该错误表示0th维度的大小不等于批量大小。

尝试更改此内容:

loss = criterion(outputs, labels.unsqueeze(0))

请注意,outputs张量应该比对应于每个标签的分数的labels张量多一个维度,而labels应该只包含正确标签的索引。