我想在将dropout应用到最大池化卷积层输出后添加一个密集层。
我有以下用Python编写的TensorFlow代码。过滤器数量为128,len(filter_sizes)为3
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Applying batch normalization
# h = tf.contrib.layers.batch_norm(conv, center=True, scale=True, is_training=True)
# Apply nonlinearity
h1 = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h1,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add dropout
with tf.name_scope("dropout"):
#self.h_drop = tf.nn.dropout(dense, self.dropout_keep_prob)
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Adding dense layer
dense = tf.layers.dense(self.h_drop, units=num_classes, activation=tf.nn.relu)
应用密集层后面临问题。
以下是错误:
Dimensions must be equal, but are 11 and 384 for 'output/scores/MatMul' (op: 'MatMul') with input shapes: [?,11], [384,11]
有人可以帮我吗?
答案 0 :(得分:0)
错误与矩阵的索引有关。我正在使用tensorflow提供的xw_plus_b函数,并使用矩阵的维数进行乘法错误。