使用tensorflow的数据集API迭代器时,我的目标是定义一个在迭代器的get_next()
张量上运算的RNN作为其输入(请参阅代码中的(1)
)。
但是,只需将dynamic_rnn
定义为get_next()
作为输入会导致错误:ValueError: Initializer for variable rnn/basic_lstm_cell/kernel/ is from inside a control-flow construct, such as a loop or conditional. When creating a variable inside a loop or conditional, use a lambda as the initializer.
现在我知道一个解决方法是简单地为next_batch
创建一个占位符,然后为张量创建eval()
(因为你不能通过张量本身)并使用{{1}传递它(请参阅代码中的feed_dict
和X
)。
但是,如果我理解正确,这不是一个有效的解决方案,因为我们首先评估然后重新初始化张量。
有没有办法:
(2)
; 或:
dynamic_rnn
张量传递给作为get_next()
输入的占位符?完整的工作示例; dynamic_rnn
版本是我想要的,但它没有,而(1)
是可行的解决方法。
(2)
(使用tensorflow 1.4.0,Python 3.6。)
非常感谢:)
答案 0 :(得分:5)
原来这个神秘的错误可能是张量流中的错误,请参阅https://github.com/tensorflow/tensorflow/issues/14729。更具体地说,错误实际上来自于提供错误的数据类型(在上面的示例中,data
数组包含int32
值,但它应该包含浮点数。)
而不是ValueError: Initializer for variable rnn/basic_lstm_cell/kernel/ is from inside a control-flow construct
错误,
张量流应该返回:
TypeError: Tensors in list passed to 'values' of 'ConcatV2' Op have types [int32, float32] that don't all match.
(见1)。
要解决此问题,只需更改
data = [ [[1], [2], [3]], [[4], [5], [6]], [[1], [2], [3]] ]
到
data = np.array([[ [1], [2], [3]], [[4], [5], [6]], [[1], [2], [3]] ], dtype=np.float32)
然后以下代码可以正常工作:
import tensorflow as tf
import numpy as np
from tensorflow.contrib.rnn import BasicLSTMCell
from tensorflow.python.data import Iterator
data = np.array([[ [1], [2], [3]], [[4], [5], [6]], [[1], [2], [3]] ], dtype=np.float32)
dataset = tf.data.Dataset.from_tensor_slices(data)
dataset = dataset.batch(2)
iterator = Iterator.from_structure(dataset.output_types,
dataset.output_shapes)
next_batch = iterator.get_next()
iterator_init = iterator.make_initializer(dataset)
# (2):
# X = tf.placeholder(tf.float32, shape=(None, 3, 1))
cell = BasicLSTMCell(num_units=8)
# (1):
outputs, states = lstm_outputs, lstm_states = tf.nn.dynamic_rnn(cell, next_batch, dtype=tf.float32)
# (2):
# outputs, states = lstm_outputs, lstm_states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
sess.run(iterator_init)
# (1):
o, s = sess.run([outputs, states])
o, s = sess.run([outputs, states])
# (2):
# o, s = sess.run([outputs, states], feed_dict={X: next_batch.eval()})
# o, s = sess.run([outputs, states], feed_dict={X: next_batch.eval()})