我有一个时间序列,在每个日期时间包含多个值。每个日期时间索引都有一个关联的日期时间,其中加载了值,或者加载时间',如下所示:
import datetime as dt
import numpy as np
import pandas as pd
# time-series index
t = pd.date_range('09/01/2017', '09/02/2017', freq='1H')
t = t.repeat(3)
n = len(t)
# data values
y = np.full((n), 0.0)
y = y.reshape(n//3, 3)
y[:, 1] = 1.0
y[:, 2] = 2.0
y = y.flatten()
# load timestamp
random_range = np.arange(0, 60)
base_date = np.datetime64('2017-10-01 12:00')
loadtimes = [base_date + np.random.choice(random_range) for x in range(n)]
df = pd.DataFrame(index=t, data={'y': y, 'loadtime': loadtimes})
>>> df.head(12)
loadtime y
2017-09-01 00:00:00 2017-10-02 01:59:00 0.0
2017-09-01 00:00:00 2017-10-02 09:23:00 1.0
2017-09-01 00:00:00 2017-10-02 03:35:00 2.0
2017-09-01 01:00:00 2017-10-01 17:26:00 0.0
2017-09-01 01:00:00 2017-10-01 16:44:00 1.0
2017-09-01 01:00:00 2017-10-02 12:50:00 2.0
2017-09-01 02:00:00 2017-10-02 11:30:00 0.0
2017-09-01 02:00:00 2017-10-02 11:17:00 1.0
2017-09-01 02:00:00 2017-10-01 20:23:00 2.0
2017-09-01 03:00:00 2017-10-02 15:27:00 0.0
2017-09-01 03:00:00 2017-10-02 18:08:00 1.0
2017-09-01 03:00:00 2017-10-01 16:06:00 2.0
到目前为止,我已经提出了这个迭代所有唯一值的解决方案......但随着时间序列的增加(以及多个值),这可能会很昂贵。它看起来有点像黑客而且不那么干净:
new_index = df.index.unique()
df_new = pd.DataFrame(index=new_index, columns=['y'])
# cycle through unique indices to find max loadtime
dfg = df.groupby(df.index)
for i, dfg_i in dfg:
max_index = dfg_i['loadtime'] == dfg_i['loadtime'].max()
if i in df_new.index:
df_new.loc[i, 'y'] = dfg_i.loc[max_index, 'y'].values[0] # WHY IS THIS A LIST?
>>> df_new.head()
y
2017-09-01 00:00:00 1
2017-09-01 01:00:00 2
2017-09-01 02:00:00 0
2017-09-01 03:00:00 1
2017-09-01 04:00:00 1
如何使用最新的加载时间'来制作时间序列。对于每个独特的指数?是否有更多的pythonic解决方案?
答案 0 :(得分:2)
首先从DatetimeIndex
创建列,然后在y
列创建set_index
。然后将groupby
与idxmax
一起使用返回索引(此处y
列值)按每组loadtime
的最大值:
print (df.rename_axis('dat')
.reset_index()
.set_index('y')
.groupby('dat')['loadtime']
.idxmax()
.to_frame('y'))
y
dat
2017-09-01 00:00:00 1.0
2017-09-01 01:00:00 2.0
2017-09-01 02:00:00 0.0
2017-09-01 03:00:00 1.0
详情:
print (df.rename_axis('dat')
.reset_index()
.set_index('y'))
dat loadtime
y
0.0 2017-09-01 00:00:00 2017-10-02 01:59:00
1.0 2017-09-01 00:00:00 2017-10-02 09:23:00
2.0 2017-09-01 00:00:00 2017-10-02 03:35:00
0.0 2017-09-01 01:00:00 2017-10-01 17:26:00
1.0 2017-09-01 01:00:00 2017-10-01 16:44:00
2.0 2017-09-01 01:00:00 2017-10-02 12:50:00
0.0 2017-09-01 02:00:00 2017-10-02 11:30:00
1.0 2017-09-01 02:00:00 2017-10-02 11:17:00
2.0 2017-09-01 02:00:00 2017-10-01 20:23:00
0.0 2017-09-01 03:00:00 2017-10-02 15:27:00
1.0 2017-09-01 03:00:00 2017-10-02 18:08:00
2.0 2017-09-01 03:00:00 2017-10-01 16:06:00
<强>计时强>:
t = pd.date_range('01/01/2017', '12/25/2017', freq='1H')
#len(df)
#[25779 rows x 2 columns]
In [225]: %timeit (df.rename_axis('dat').reset_index().set_index('y').groupby('dat')['loadtime'].idxmax().to_frame('y'))
1 loop, best of 3: 870 ms per loop
In [226]: %timeit df.groupby(level=0).apply(lambda x : x.set_index('y').idxmax()).rename(columns={'loadtime':'y'})
1 loop, best of 3: 4.96 s per loop
答案 1 :(得分:2)
您可以使用groupby level 0
并应用即
ndf = df.groupby(level=0).apply(lambda x : x.set_index('y').idxmax()).rename(columns={'loadtime':'y'})
Ouptut:ndf.head()
y 2017-09-01 00:00:00 1.0 2017-09-01 01:00:00 1.0 2017-09-01 02:00:00 2.0 2017-09-01 03:00:00 1.0 2017-09-01 04:00:00 1.0